除了基本的数学常量和常用数学函数之外,Maple也提供了部分常用的特殊函数。
在此给出它们的定义说明:
函数 | 定义 |
---|---|
binomial(n,m)binomial(n,m)binomial(n,m) | 如果0⩽m⩽n0 \leqslant m \leqslant n0⩽m⩽n,则二项式系数Cnm=n!m!(n−m)!C_{n}^{m}=\frac{n!}{m!\left( n-m \right) !}Cnm=m!(n−m)!n!.更一般的定义由Γ\GammaΓ给出:binomial(n,m)=Γ(n+1)Γ(m+1)Γ(n−m+1)binomial(n,m)=\frac{\Gamma (n+1)}{\Gamma (m+1)\Gamma (n-m+1)}binomial(n,m)=Γ(m+1)Γ(n−m+1)Γ(n+1) |
GAMMA(z)GAMMA(z)GAMMA(z) | Γ\GammaΓ函数,定义为:Γ(z)=∫∞0e−ttz−1dt\Gamma (z)=\int_{\infty}^{0}{e^{-t}t^{z-1}}dtΓ(z)=∫∞0e−ttz−1dt |
GAMMA(z,a)GAMMA(z,a)GAMMA(z,a) | 不完备的Γ\GammaΓ函数,定义为:Γ(z,a)=∫∞0e−tta−1dt\Gamma (z,a)=\int_{\infty}^{0}{e^{-t}t^{a-1}}dtΓ(z,a)=∫∞0e−tta−1dt |
Psi(z)Psi(z)Psi(z) | 二次Γ\GammaΓ函数,定义为:Ψ(x)=ddxΓ(x)Γ(x)\Psi (x)=\frac{\frac{d}{dx}\Gamma (x)}{\Gamma (x)}Ψ(x)=Γ(x)dxdΓ(x) |
Psi(n,z)Psi(n,z)Psi(n,z) | nnn次Γ\GammaΓ函数(也就是二次Γ\GammaΓ函数的nnn次导数),定义为:Ψ(n,x)=dndxnΨ(x)\Psi(n,x)=\frac{d^n}{dx^n}\Psi(x)Ψ(n,x)=dxndnΨ(x) |
Beta(x,y)Beta(x,y)Beta(x,y) | β\betaβ函数,定义为:β(x,y)=Γ(x)Γ(y)Γ(x+y)\beta (x,y)=\frac{\Gamma (x)\Gamma (y)}{\Gamma (x+y)}β(x,y)=Γ(x+y)Γ(x)Γ(y) |
Zeta(x)Zeta(x)Zeta(x)、Zeta(n,x)Zeta(n,x)Zeta(n,x) | 黎曼ζ\zetaζ函数和它的nnn阶导数。定义为:ζ(x)=∑i=1∞1ix\zeta \left( x \right) =\sum_{i=1}^{\infty}{\frac{1}{i^x}}ζ(x)=∑i=1∞ix1,ζ(n,x)=dnζ(x)dxn\zeta \left( n,x \right) =\frac{d^n\zeta \left( x \right)}{dx^n}ζ(n,x)=dxndnζ(x) |
BesselJ(n,z)、BesselI(n,z)BesselJ(n,z)、BesselI(n,z)BesselJ(n,z)、BesselI(n,z)、BesselY(n,z)、BesselK(n,z)BesselY(n,z)、BesselK(n,z)BesselY(n,z)、BesselK(n,z) | BesselJBesselJBesselJ是第一类贝塞尔函数;BesselIBesselIBesselI是改进的第一类贝塞尔函数;BesselYBesselYBesselY是第二类贝塞尔函数(WeberWeberWeber函数);BesselKBesselKBesselK是改进的第二类贝塞尔函数。 |
LegendreF(x,k)、LegendreE(x,k)LegendreF(x,k)、LegendreE(x,k)LegendreF(x,k)、LegendreE(x,k)、LegendreKc(k)、LegendreEc(k)LegendreKc(k)、LegendreEc(k)LegendreKc(k)、LegendreEc(k) | LegendreFLegendreFLegendreF和LegendreELegendreELegendreE分别表示第一和第二类椭圆积分;LegendreKcLegendreKcLegendreKc和LegendreFcLegendreFcLegendreFc分别表示完备的第一类和第二类椭圆积分。 |
Si(z)、Ci(z)、Ei(z)、Li(z)Si(z)、Ci(z)、Ei(z)、Li(z)Si(z)、Ci(z)、Ei(z)、Li(z) | Si(z)Si(z)Si(z)是正弦积分:∫0zsin(t)tdt\int_{0}^{z}\frac{sin(t)}{t}dt∫0ztsin(t)dt;Ci(z)Ci(z)Ci(z)是余弦积分:γ+ln(Iz)−Iπ2+∫0zcos(t)−1tdt\gamma+\ln(Iz)-\frac{I\pi}{2}+\int_{0}^{z}\frac{\cos(t)-1}{t}dtγ+ln(Iz)−2Iπ+∫0ztcos(t)−1dt;Ei(z)Ei(z)Ei(z)是指指数积分∫−∞zettdt\int_{-\infty}^{z} \frac{e^t}{t}dt∫−∞ztetdt;Li(z)Li(z)Li(z)是指对数积分:∫0zcos(πt22)dt\int_0^z \cos(\frac{\pi t^2}{2})dt∫0zcos(2πt2)dt |
FresnelS(z)、FresnelC(z)FresnelS(z)、FresnelC(z)FresnelS(z)、FresnelC(z) | FresnelFresnelFresnel的正弦积分函数和余弦积分函数,分别定义为:∫0zsin(πt22)dt\int_0^z \sin(\frac{\pi t^2}{2})dt∫0zsin(2πt2)dt和∫0zcos(πt22)dt\int_0^z \cos (\frac{\pi t^2}{2})dt∫0zcos(2πt2)dt. |
erf(x)erf(x)erf(x) | 误差函数,定义为:erf(x)=2(π)∫0xe−t2dterf(x)=\frac{2}{\sqrt(\pi)}\int_0^x e^{-t^2}dterf(x)=(π)2∫0xe−t2dt |
这些特殊的函数可以直接使用,也可以从orthoploy,numtheory,combinat,statsorthoploy,numtheory,combinat,statsorthoploy,numtheory,combinat,stats等程序包中直接调用。