Maple中的部分特殊函数及其定义

这篇博客详细介绍了Maple软件中的一系列特殊数学函数,包括二项式系数、Γ函数、不完备Γ函数、二次Γ函数及其导数、β函数、黎曼ζ函数、贝塞尔函数、椭圆积分、正弦积分、余弦积分、误差函数以及Fresnel积分等。这些函数在数学和科学计算中有广泛应用,并可在Maple的不同程序包中直接调用。

除了基本的数学常量和常用数学函数之外,Maple也提供了部分常用的特殊函数。
在此给出它们的定义说明:

函数定义
binomial(n,m)binomial(n,m)binomial(n,m)如果0⩽m⩽n0 \leqslant m \leqslant n0mn,则二项式系数Cnm=n!m!(n−m)!C_{n}^{m}=\frac{n!}{m!\left( n-m \right) !}Cnm=m!(nm)!n!.更一般的定义由Γ\GammaΓ给出:binomial(n,m)=Γ(n+1)Γ(m+1)Γ(n−m+1)binomial(n,m)=\frac{\Gamma (n+1)}{\Gamma (m+1)\Gamma (n-m+1)}binomial(n,m)=Γ(m+1)Γ(nm+1)Γ(n+1)
GAMMA(z)GAMMA(z)GAMMA(z)Γ\GammaΓ函数,定义为:Γ(z)=∫∞0e−ttz−1dt\Gamma (z)=\int_{\infty}^{0}{e^{-t}t^{z-1}}dtΓ(z)=0ettz1dt
GAMMA(z,a)GAMMA(z,a)GAMMA(z,a)不完备的Γ\GammaΓ函数,定义为:Γ(z,a)=∫∞0e−tta−1dt\Gamma (z,a)=\int_{\infty}^{0}{e^{-t}t^{a-1}}dtΓ(z,a)=0etta1dt
Psi(z)Psi(z)Psi(z)二次Γ\GammaΓ函数,定义为:Ψ(x)=ddxΓ(x)Γ(x)\Psi (x)=\frac{\frac{d}{dx}\Gamma (x)}{\Gamma (x)}Ψ(x)=Γ(x)dxdΓ(x)
Psi(n,z)Psi(n,z)Psi(n,z)nnnΓ\GammaΓ函数(也就是二次Γ\GammaΓ函数的nnn次导数),定义为:Ψ(n,x)=dndxnΨ(x)\Psi(n,x)=\frac{d^n}{dx^n}\Psi(x)Ψ(n,x)=dxndnΨ(x)
Beta(x,y)Beta(x,y)Beta(x,y)β\betaβ函数,定义为:β(x,y)=Γ(x)Γ(y)Γ(x+y)\beta (x,y)=\frac{\Gamma (x)\Gamma (y)}{\Gamma (x+y)}β(x,y)=Γ(x+y)Γ(x)Γ(y)
Zeta(x)Zeta(x)Zeta(x)Zeta(n,x)Zeta(n,x)Zeta(n,x)黎曼ζ\zetaζ函数和它的nnn阶导数。定义为:ζ(x)=∑i=1∞1ix\zeta \left( x \right) =\sum_{i=1}^{\infty}{\frac{1}{i^x}}ζ(x)=i=1ix1,ζ(n,x)=dnζ(x)dxn\zeta \left( n,x \right) =\frac{d^n\zeta \left( x \right)}{dx^n}ζ(n,x)=dxndnζ(x)
BesselJ(n,z)、BesselI(n,z)BesselJ(n,z)、BesselI(n,z)BesselJ(n,z)BesselI(n,z)BesselY(n,z)、BesselK(n,z)BesselY(n,z)、BesselK(n,z)BesselY(n,z)BesselK(n,z)BesselJBesselJBesselJ是第一类贝塞尔函数;BesselIBesselIBesselI是改进的第一类贝塞尔函数;BesselYBesselYBesselY是第二类贝塞尔函数(WeberWeberWeber函数);BesselKBesselKBesselK是改进的第二类贝塞尔函数。
LegendreF(x,k)、LegendreE(x,k)LegendreF(x,k)、LegendreE(x,k)LegendreF(x,k)LegendreE(x,k)LegendreKc(k)、LegendreEc(k)LegendreKc(k)、LegendreEc(k)LegendreKc(k)LegendreEc(k)LegendreFLegendreFLegendreFLegendreELegendreELegendreE分别表示第一和第二类椭圆积分;LegendreKcLegendreKcLegendreKcLegendreFcLegendreFcLegendreFc分别表示完备的第一类和第二类椭圆积分。
Si(z)、Ci(z)、Ei(z)、Li(z)Si(z)、Ci(z)、Ei(z)、Li(z)Si(z)Ci(z)Ei(z)Li(z)Si(z)Si(z)Si(z)是正弦积分:∫0zsin(t)tdt\int_{0}^{z}\frac{sin(t)}{t}dt0ztsin(t)dt;Ci(z)Ci(z)Ci(z)是余弦积分:γ+ln⁡(Iz)−Iπ2+∫0zcos⁡(t)−1tdt\gamma+\ln(Iz)-\frac{I\pi}{2}+\int_{0}^{z}\frac{\cos(t)-1}{t}dtγ+ln(Iz)2Iπ+0ztcos(t)1dt;Ei(z)Ei(z)Ei(z)是指指数积分∫−∞zettdt\int_{-\infty}^{z} \frac{e^t}{t}dtztetdt;Li(z)Li(z)Li(z)是指对数积分:∫0zcos⁡(πt22)dt\int_0^z \cos(\frac{\pi t^2}{2})dt0zcos(2πt2)dt
FresnelS(z)、FresnelC(z)FresnelS(z)、FresnelC(z)FresnelS(z)FresnelC(z)FresnelFresnelFresnel的正弦积分函数和余弦积分函数,分别定义为:∫0zsin⁡(πt22)dt\int_0^z \sin(\frac{\pi t^2}{2})dt0zsin(2πt2)dt∫0zcos⁡(πt22)dt\int_0^z \cos (\frac{\pi t^2}{2})dt0zcos(2πt2)dt.
erf(x)erf(x)erf(x)误差函数,定义为:erf(x)=2(π)∫0xe−t2dterf(x)=\frac{2}{\sqrt(\pi)}\int_0^x e^{-t^2}dterf(x)=(π)20xet2dt

这些特殊的函数可以直接使用,也可以从orthoploy,numtheory,combinat,statsorthoploy,numtheory,combinat,statsorthoploy,numtheory,combinat,stats等程序包中直接调用。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王贝贝的爸爸

觉得有用给点鼓励吧,求求你了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值