求证:一个模n的精简剩余集中所有元素的乘积,模n后的结果是1或-1.

本文探讨了模n的精简剩余集如何构成一个群,并证明了其元素的乘积模n后结果为1或-1。通过群论的概念,展示了集合中的元素互为逆元,且所有元素的乘积涉及到了二阶元和相反数的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(李辉, 黄佳俊, 张世东等)

证明:

首先一个事实是:

模n的精简剩余集关于模n的乘法运算构成一个群G,(可通过群的定义来证明,此处略)。

于是所有的元素都有逆元,因此模n的精简剩余集中的元素要么两两互逆,要么逆元是自己。

除了1,其它逆元是自己的元素都是二阶元,即x^2同模于1%n。

不妨用x1,x2,x3……xk,-1来表示这些二阶元。

 

第二个事实是:

{1,x1,x2,x3……xk,-1}也构成一个群G'。

封闭性是因为任意xi*xj%n也是个二阶元,于是仍在该集合中。)

如果用-1去乘以任意一个xi得到,显然存在一个不同于xi的xj使得:-xi同模于xj%n 。

也就是说,这个G'中的元素互为相反数,于是将G'中所有元素相乘,会得到1*(-1)*x1*(-x1)…… 同模于(-1)^t%n. (因为xi都是二阶元)

 

综上所述

一个模n的精简剩余集中所有元素的乘积,模n后的结果是1或-1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值