
数论
文章平均质量分 53
黄佳俊、
to be or not to be!
热爱生活!
执着学习!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
裸求卡特兰数(c++)
问题描述: 在一个格点阵列中,从(0,0)点走到(n,n)点且不经过对角线x==y的方法数(x> y)。 法一、质分子分解: #include<bits/stdc++.h> using namespace std; typedef long long ll; const ll mod=9982357; ll qpow(ll a, ll n, ll p=mod) { ll re = 1; while(n) { if(n & 1)原创 2021-06-01 09:35:33 · 839 阅读 · 2 评论 -
斐波那契数最小公因数性质:gcd(F[n],F[m])=F[gcd(n,m)]
引理1 结论:F(n)=F(m)F(n−m+1)+F(m−1)F(n−m) 推导: F(n) =F(n−1)+F(n−2) =2F(n−2)+F(n−3) =3F(n−3)+2F(n−4) =5F(n−4)+3F(n−5) =⋯ =F(m)F(n−m+1)+F(m−1)F(n−m) 看出系数的规律了,2=1+1,3=2+1,5=3+2,…… 用数学归纳法严谨证明一下: 1)当m=2时,F(n)=F(2)F(n−2+1)+F(2−1)F(n−2)=F(n−1)+F(n−2)成立。原创 2021-05-31 14:30:54 · 705 阅读 · 0 评论 -
求证:一个模n的精简剩余集中所有元素的乘积,模n后的结果是1或-1.
证明: 首先一个事实是: 模n的精简剩余集关于模n的乘法运算构成一个群G,(可通过群的定义来证明,此处略)。 于是所有的元素都有逆元,因此模n的精简剩余集中的元素要么两两互逆,要么逆元是自己。 除了1,其它逆元是自己的元素都是二阶元,即x^2同模于1%n。 不妨用x1,x2,x3……xk,-1来表示这些二阶元。 第二个事实是: {1,x1,x2,x3……xk,-1}也构成一个群G'。 封闭性是因为任意xi*xj%n也是个二阶元,于是仍在该集合中。) 如果用-1去乘以任意一个xi得到,.原创 2021-04-22 11:32:32 · 508 阅读 · 0 评论