色彩校正以及矩阵拓展

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

进一步了解色彩校正


一、背景

目的:将传感器感知到的色彩转为人眼感知的色彩。
需要满足的条件
1)完成sensor_rgb —>srgb的转换;
2)满足卢瑟条件。
卢瑟条件:三个线性无关的颜色,可以混合出任意颜色。
3*3的色彩校正矩阵,最先由谁提出?
3*3的色彩校正矩阵是由von Kries假设定义的。von Kries假设是一种基于独立锥体适应的色彩适应方法,通过简单的对角矩阵变换来实现颜色校正,它是大多数现代色彩适应模型的基础。

二、von Kries假设

色彩适应理论

Von Kries 于1902年提出了色彩适应转换模式,“人眼中感知颜色的锥细胞与人对色彩的心理感知是两个彼此独立的主体,彼此互不影响”,这是现代所有色适应模式的基础。他的假设认为,视觉色彩适应的关键在于“色外观模式”对视觉色彩适应的处理方式。这一理论在跨设备的色彩再现中起着至关重要的作用,因为色彩渲染方式(Rendering Styles)直接影响到色彩的准确再现。
核心思想:色彩适应可以通过独立地对每个锥体响应进行增益调整来实现,以保持参考白色的适应外观恒定。

人眼的三种视椎细胞:

  1. S 视锥细胞(Short-wavelength sensitive cones):对短波长的光敏感,其峰值敏感波长在蓝光区域(约 420-440 纳米)。
  2. M 视锥细胞(Medium-wavelength sensitive cones):对中波长的光敏感,其峰值敏感波长在绿光区域(约 530-540 纳米)。
  3. L 视锥细胞(Long-wavelength sensitive cones):对长波长的光敏感,其峰值敏感波长在红光区域(约 560-580 纳米)。
    ps:von Kries假设在现代色彩适应模型中,提供了理论基础,实际使用的方程并非他提出。
    在这里插入图片描述
    在这里插入图片描述
    当两个颜色的CIE 三刺激值(XYZ)相同时,人的视锥细胞接受到的刺激强度是相同的,那么这两个颜色的感知一定相同吗?答案是否定的。
    在这里插入图片描述

三、色域覆盖能力、侧重色彩、案例

问题1:描述sRGB域的覆盖能力

在手机摄像头色彩校正的过程中,sRGB色域的覆盖能力可以用以下数据来描述:

  1. 色域覆盖率:这是一个百分比,表示经过校正后的颜色能够覆盖sRGB色域的多少。例如,如果色域覆盖率是95%,这意味着校正后的颜色能够覆盖sRGB色域的95%。
  2. 色彩差异(ΔE):这是一个数值,表示校正后的颜色与目标颜色之间的差异。ΔE值越低,表示颜色越准确。通常,ΔE值在1以下表示肉眼几乎察觉不到的差异。
  3. 色域图:色域图是一个二维图表,显示了设备能够显示的所有颜色范围。通过比较校正后的色域图和标准sRGB色域图,可以直观地看到覆盖能力。

计算

- 色域覆盖率
色域覆盖率通常需要通过实验测量和计算。一般来说,需要使用色度计或分光光度计测量校正后的实际色域,然后与标准sRGB色域进行比较。软件工具可以帮助生成色域图并计算覆盖率。

- 色彩差异(ΔE)
ΔE值计算需要以下步骤:
采样颜色:选择一组标准颜色样本,通常使用国际照明委员会(CIE)定义的标准。
应用校正矩阵:将传感器RGB值通过校正矩阵转换到sRGB。
计算ΔE:使用公式计算每个样本的色彩差异:
牛_阿花在这里插入图片描述

CIE76
- 指标:ΔE* = √((ΔL*)² + (Δa*)² + (Δb*)²)
- 肉眼不可见范围:通常ΔE* ≤ 1被认为是肉眼不可见的。
- 色差较大范围:ΔE* ≥ 3被认为是明显的色差。

CIE94
- 指标:ΔE94 = √((ΔL*/K_L S_L)² + (ΔC*/K_C S_C)² + (ΔH*/K_H S_H)²)
- K_L, K_C, K_H 是加权系数
- S_L, S_C, S_H 是缩放系数
- 肉眼不可见范围:ΔE94 ≤ 1被认为是肉眼不可见的。
- 色差较大范围:ΔE94 ≥ 3被认为是明显的色差。

CIEDE2000
- 指标:ΔE00,公式较复杂,考虑了更多的颜色因素。
- 肉眼不可见范围:ΔE00 ≤ 1被认为是肉眼不可见的。
- 色差较大范围:ΔE00 ≥ 2.3被认为是明显的色差。
这些公式适用于不同的应用场景,CIEDE2000通常被认为是最准确的,因为它考虑了更多的视觉因素。

问题2:颜色不准时的侧重点

在色彩校正过程中,有时候某些颜色可能不准,特别是在色域覆盖范围较大的情况下。以下是需要着重注意的颜色和相对可以牺牲的颜色:

  1. 重点关注的颜色:
    • 肤色:因为人对肤色的敏感度很高,肤色的还原准确性非常重要。
    • 天空蓝和草地绿:这两种颜色在人眼中非常常见,错误的还原会容易被察觉。
    • 红色:红色在很多场景中都非常重要,如花朵、衣服等。
  2. 相对可以牺牲的颜色:
    • 极端颜色:如非常暗的颜色或非常亮的颜色,这些颜色在实际使用中出现的频率较低,可以相对牺牲。
    • 不常见的颜色:如某些特殊的棕色或紫色,这些颜色在人眼中的关注度较低,可以在一定范围内牺牲。

具体案例
假设你有一个手机摄像头的传感器,输出的原始RGB数据需要通过3x3色彩校正矩阵转换为sRGB色域。校正矩阵可能是:
在这里插入图片描述
转换公式为:
[ ( R s R G B   G s R G B   B s R G B ) M ( R s e n s o r   G s e n s o r   B s e n s o r ) ] [ \begin{pmatrix} R_{sRGB} \ G_{sRGB} \ B_{sRGB} \end{pmatrix} M \begin{pmatrix} R_{sensor} \ G_{sensor} \ B_{sensor} \end{pmatrix} ] [(RsRGB GsRGB BsRGB)M(Rsensor Gsensor Bsensor)]
通过色域覆盖率计算,你发现校正后的色域覆盖了sRGB的92%。通过ΔE计算,平均ΔE值为1.5,说明大部分颜色还是比较准确的,但有一些颜色的不准确度稍高。

小结

  1. 用色域覆盖率、色彩差异(ΔE)和色域图来描述sRGB域的覆盖能力。
  2. 在色彩校正中重点注意肤色、天空蓝、草地绿和红色的还原,其余不常见或极端颜色可以在一定范围内牺牲。

四、色卡到矩阵

获取颜色矩阵A,B
在这里插入图片描述

五、拓展矩阵

目的

想要拓展色彩校正的覆盖率

拓展方式

保持3*3原有色彩校正的同时,增加维度和功能。

拓展矩阵案例

1. 多光谱成像:
在工业检测和遥感中,使用多光谱相机捕获多个波段的信息。此时,矩阵可以扩展为n×n,以适应多个通道。
2. 医学成像:
使用n×m矩阵将多通道医学图像数据转换为特定的分析空间,帮助识别特定组织或病变。
3. 4*4 矩阵滤镜:
相比于33ccm,44需要增加一个通道alpha,通过改变矩阵实现不同的滤镜。
在这里插入图片描述
在这里插入图片描述

面临的挑战
“扩展色彩校正矩阵时可能面临哪些技术挑战和限制?”
维度不匹配:处理不同通道数量时,可能导致信息丢失或冗余。
计算复杂性:高维矩阵运算复杂,计算量大。
准确性和校准:需要精确的测量和校准来确保转换的准确性。
设备依赖性:不同设备的特性差异可能导致校正矩阵不通用。

六、图卡

在这里插入图片描述

  1. 爱丽色(X-Rite):
  • 专注领域:主要提供色彩管理解决方案,以确保颜色的精确性和一致性。
  • 产品:包括色卡(如 ColorChecker)、分光光度计、校色仪和软件等。
  • 应用:广泛用于摄影、印刷、设计和视频制作等领域。
  1. 三恩时(Sekonic):
  • 专注领域:以生产曝光计和测光表著称。
  • 产品:主要产品包括各种类型的曝光计,用于测量环境光和闪光灯光线,以帮助摄影师和电影制作人获得正确的曝光。
  • 应用:主要应用于摄影和影视制作行业。
  1. Image Engineering:
  • 专注领域:专注于图像质量测试解决方案。
  • 产品和服务:包括测试图表、测试设备、分析软件,以及专业的测试实验室服务。
  • 应用:服务于多个行业,包括数码相机、汽车、手机和安全行业。
    比较总结:
  • 产品类型:爱丽色专注于色彩管理工具,三恩时专注于光线测量设备,而 Image Engineering 专注于图像质量测试设备和服务。
  • 应用范围:爱丽色和三恩时的产品主要面向摄影和影视制作,Image Engineering 的解决方案则更加广泛,涉及多个行业的图像设备测试。
  • 市场定位:三家公司的产品都定位于专业用户和企业客户,提供高质量和专业水平的产品与服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值