交互式马尔可夫链(IMC)说明
定义与基本概念
交互式马尔可夫链(Interactive Markov Chains, IMC)是一种结合了功能模型和性能模型的混合模型。它将标记变迁系统(Labelled Transition System, LTS)和连续时间马尔可夫链(Continuous-Time Markov Chain, CTMC)结合在一起,用于描述系统的功能和性能特征。IMC通过正交化的方式将功能和性能特征结合,使得在同一模型下可以同时描述和度量系统的功能和性能。
IMC模型定义如下:
- 状态集合(S):一个非空的状态集合,表示系统的各种可能状态。
- 动作集合(Act):一个动作集合,表示系统状态之间的可能转移动作。
- 动作转移关系(→):描述系统在不同状态之间通过某个动作发生的转移。
- 马尔可夫转移关系(↝):描述系统在不同状态之间基于时间的转移概率。
- 初始状态(s0):系统的初始状态。
IMC模型通过以上五元组(S, Act, →, ↝, s0)来描述。
特性
-
正交性:IMC结合了LTS的动作转移和CTMC的随机延迟转移,通过正交化的方式将两者结合,保留了功能和性能的独立性。
-
非确定性与随机性:IMC能够同时处理非确定性的动作选择和随机性的时间延迟。在同一个状态下,系统既可以通过动作转移到达下一个状态,也可以通过马尔可夫转移在一定时间内到达下一个状态。
-
最大前进假设:在IMC模型中,如果系统在某个状态有内部动作(如中断)可以执行,则该动作会立即执行,不允许其他延迟