视觉SLAM入门 -- 学习笔记 - Part 9 Kitti 的双目视觉里程计

本文介绍如何利用Kitti数据集实现双目视觉里程计,通过逐帧估计运动并进行关键帧选择与束调整来降低误差。虽然在实际运行中遇到时间效率问题,但最终效果显示出较好的轨迹精度。探讨了车载系统的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kitti 的Odometry 提供了左右双目的视觉图像(以及激光,但本作业不使用激光数据),并提供了标定信息。它一共含有若干个Sequence,其中一部分Sequence 的真实轨迹是开放的,另一部分则是隐藏的,作为测试使用。在Kitti 官网可以上传你对测试部分的轨迹估计,系统会计算与真实轨迹的差异,并给出评分。
现在我们已经介绍了所有关于视觉SLAM 方面的内容,你可以基于已有算法,实现一个双目的视觉里程计了。Kitti 官网odometry 分类下提供了双目相机的所有信息。请你根据已学知识,实现双目视觉里程计,然后运行任何一个sequence,并与标准轨迹比较。 ε \varepsilon ε
在这里插入图片描述

以下是实现过程中的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昼行plus

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值