day44第九章动态规划(二刷)

文章介绍了完全背包的理论基础,这是一种每种物品可以无限次放入背包的问题。接着,通过LeetCode上的两道题目518.零钱兑换II和377.组合总和IV,展示了完全背包理论在解决实际问题中的应用,这两道题目都涉及到了组合计数,可以通过动态规划求解。文章强调了解决这类问题时遍历顺序的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今日任务

  • 完全背包理论基础
  • 518.零钱兑换II
  • 377.组合总和IV

力扣上没有纯粹的完全背包的题目,所以大家看本篇了解一下 完全背包的理论。
后面的两道题目,都是完全背包的应用,做做感受一下


完全背包理论基础

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件


518.零钱兑换II

题目链接:

https://leetcode.cn/problems/coin-change-ii/description/

题目描述:

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。

题目数据保证结果符合 32 位带符号整数。

示例 1:

输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。

示例 3:

输入:amount = 10, coins = [10]
输出:1

提示:

  • 1 <= coins.length <= 300
  • 1 <= coins[i] <= 5000
  • coins 中的所有值 互不相同
  • 0 <= amount <= 5000

题解代码:

class Solution {
public:
    //二刷动规
    int change(int amount, vector<int>& coins){
        vector<int> dp(amount+1,0);//dp数组,dp[j]表示凑成金额j有dp[j]种组合数 
        dp[0] = 1;//初始化dp数组,dp[0]=1,表示凑成金额为0的货币,有1种组合数
        for(int i = 0; i < coins.size();i++){//遍历物品
            for(int j = coins[i]; j <= amount; j++){//遍历背包
                dp[j] += dp[j-coins[i]]; //递推方程

            }
        }
        return dp[amount];
    }

    //一刷动规
    /*
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount+1,0);//dp数组,dp[j]表示凑成金额j有dp[j]种组合数
        dp[0] = 1; //初始化dp数组,dp[0]=1,即凑成金额为0的货币,有1种组合数
        for(int i = 0; i < coins.size();i++){ //遍历物品
            for(int j = coins[i]; j <= amount;j++){ //遍历背包
                dp[j] += dp[j-coins[i]]; //递推方程
            }

        }

        return dp[amount];

    }
    */
};

377.组合总和IV

题目链接:

https://leetcode.cn/problems/combination-sum-iv/description/

题目描述:

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

题目数据保证答案符合 32 位整数范围。

示例 1:

输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。

示例 2:

输入:nums = [9], target = 3
输出:0

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 1000
  • nums 中的所有元素 互不相同
  • 1 <= target <= 1000

**进阶:**如果给定的数组中含有负数会发生什么?问题会产生何种变化?如果允许负数出现,需要向题目中添加哪些限制条件?

题解代码:

class Solution {
public:
    //二刷动规
    int combinationSum4(vector<int>& nums, int target){
        vector<int> dp(target+1,0);//dp数组,dp[j]表示凑成j有dp[j]种排列
        dp[0] = 1; //初始化dp数组,dp[0] = 1,才能为其他dp[i]打下数值基础,本身并无意义
        for(int i = 0; i <= target;i++){//遍历背包 
            for(int j = 0; j < nums.size();j++){//遍历物品
                if(i-nums[j] >= 0 && dp[i] < INT_MAX - dp[i-nums[j]]){
                    dp[i] += dp[i-nums[j]];
                }

            }
            
        }
        return dp[target];
    }

    //一刷动规
    /*
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target+1,0); //dp数组,dp[j]表示凑成j有dp[j]种排列
        dp[0] = 1; //初始化dp数组,dp[0] = 1,才能为其他dp[i]打下数值基础,本身并无 意义
        for(int i = 0; i <= target;i++){ //遍历背包
            for(int j = 0; j < nums.size();j++){ //遍历物品
                 if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]){

                        dp[i] += dp[i-nums[j]];
                 }
                

            }

        }

        return dp[target];

    }
    */
};

总结

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值