Python数据分析宝典【专栏导读】
🐍 专栏简介
本专栏专注于用Python
进行高效数据分析的全流程实战,涵盖Numpy,Pandas,Matplotlib,Seaborn等模块的学习,以及数据获取、清洗、分析到可视化的完整技能栈,助力有关领域开发者,快速掌握数据分析核心工具链。
(并附赠8篇计量经济学常用工具stata
有关的技术博客)。
专栏质量高,入门周期短,更新期间价格更为特惠,欢迎订阅!
📈 学习路径
Numpy 部分
✨Numpy数组的创建(Numpy篇-01)
✨随机Numpy数组的创建(Numpy篇-02)
✨根据既定数组创建数组 (Numpy篇-03)
✨Numpy数组的数据类型(Numpy篇-04)
✨Numpy数组常用属性(Numpy篇-05)
✨Numpy数组的重塑,转置与切片 (Numoy篇-06)
✨Numpy数组的运算(Numpy篇-07)
✨Numpy数组的合并与拆分(Numpy篇-08)
✨Numpy数组中 数据的删除(Numpy篇-09)
✨Numpy数组中 数据的修改(Numpy篇-10)
✨Numpy数组中数据的筛选 【np.where()】(Numpy篇-11)
✨Numpy数组基本运算函数与常用统计分析函数(Numpy篇-12)
✨Numpy数组中数据的排序【sort(),argsort()与 lexsort()】 (Numpy篇-13)
✨Numpy自定义功能函数 【np.apply_along_axis()】(Numpy篇-14)
✨Numpy数组的去重 【np.unique()】(Numpy篇-15)
✨Numpy矩阵(Numpy篇-16)
Pandas 部分
✨Pandas中的Series(Pandas篇-01)
✨Pandas中DataFrame对象的创建与常用属性方法(Pandas篇-02)
✨DataFtame的索引与切片(Pandas篇-03)
✨Python pandas loc布尔索引(指定条件下的索引)(pandas篇-04)
✨Python Pandas 如何增加/插入一列数据(pandas篇-05)
✨Python 如何给DataFrame增加一行/多行 数据(Pandas篇-06)
✨Python DataFrame对象 索引列的相关操作 (Pandas篇-07)
✨Python DataFrame修改列名(Pandas篇-08)
✨Python 通过loc/iloc修改DataFrame数据( Pandas篇-09)
✨Python 删除DataFrame局部数据 ( Pandas篇-10)
✨Python 处理缺失值(Pandas篇-11)
✨Python 重复值处理(Pandas篇-12)
✨Python DataFrame对象数据的排序(Pandas篇-13)
✨Python Excel/csv文件的保存与读取(Pandas篇-14)
✨Python DataFrame常用描述性统计分析方法(Pandas篇-15)
✨Python DataFrame数据分组统计(Pandas篇-16)
✨Python 自定义操作函数apply(),map(),applymap()(Pandas篇-17)
✨Python DataFrame数据格式化(设置小数位数,百分比,千分位分隔符)(Pandas篇-18)
✨Python 多重索引DataFrame数据(Pandas篇-19)
✨Python DataFrame数据重塑: stack()
,unstack()
和pivot()
操作(Pandas篇-20)
✨Python DataFrame数据合并 merge()、concat()方法(Pandas篇-21)
✨Python DataFrame时间序列数据(Pandas篇-22)
✨PYthon 时间序列数据重采样-resample()方法(Pandas篇-23)
Matplotlib绘图
✨Python Matplotlib绘图基本知识 (Matplotlib篇-01)
✨Python plot()方法设置线条样式(Matplotlib篇-02)
✨Python 可视化图像增加注释【plt.text() & plt.annotate()】(Matplotlib篇-03)
✨Python 时间序列数据绘制折线图(Matplotlib篇 -04)
✨Python plt.rcParams 字典(Matplotlib篇-05)
✨Python 散点图的绘制【plt.sactter()】(Matplotlib篇-06)
✨Python 绘制柱状图【plt.bar()】(Matplotlib篇-07)
✨Python 直方图的绘制-【plt.hist()】(Matplotlib篇-08)
✨Python 饼形图的绘制【从一般饼状图到内嵌环形图】(Matplotlib篇-09)
✨Python 彩虹色映射【cm.rainbow()方法】(Matplotlib篇-10)
✨Python等高线图的绘制(Matplotlib篇-11)
✨Python 热力图的绘制(Matplotlib篇-12)
✨Python 箱线图的绘制(Matplotlib篇-13)
✨Python 雷达图的绘制(极坐标图) (Matplotlib篇-14)
✨Python面积图的绘制(堆叠区域图)(Matplotlib篇-15)
✨Python 面向对象绘图(Matplotlib篇-16)
seaborn绘图
✨Python seaborn库的安装与图像的背景风格(Seaborn篇-01)
✨Python seaborn库的边框设置(Seaborn篇-02)
✨Python 散点图的绘制(Seaborn篇-03)
✨Python 折线图的绘制(Seaborn篇-04)
✨Python seaborn-多重子图(Seaborn篇-05)
✨…
计量经济模型-stata篇(附赠)
✨stata常用命令集锦【计量经济系列(一)】
✨stata图像绘制专题【计量经济系列(二)】
✨stata回归分析与系数检验专题【计量经济系列(三)】
✨stata 异方差专题【计量经济系列(四)】
✨stata 自相关专题【计量经济系列(五)】
✨stata 模型设定专题【计量经济系列(六)】(遗漏变量、无关变量、多重共线性、leverage、虚拟变量、线性插值…)
✨stata 工具变量法【计量经济系列(七)】
✨工具变量法案例【计量经济系列(八)】
🚀 专栏特色
✂️ 剔除冗余概念,保留最高频使用的语法
🎯 循序渐进,立足于初学者视角,包容性强
⚡ 系统的知识体系,内容丰富全面; 便宜,性价比高
📚 附赠8篇stata
工具使用教程,助力相关人士计量经济学的入门与研究
📅 持续更新ing…
🤔 适合人群
①想转型数据分析的Python开发者
②需要处理业务数据的市场/运营人员
③科研论文中的数据可视化需求者
④准备面试数据分析岗位的求职者
⑤其他适合人群
📆 更新计划
持续不定时更新ing,敬请期待~
————————————————
💡 现在开始?推荐从✨Numpy数组的创建(Numpy篇-01) 开始你的旅程!