PyTorch 环境配置


参考文章:
2025年最新PyTorch环境配置保姆级教程(附安装包)
超详细 CUDA 安装与卸载教程(图文教程)
PyTorch安装、配置环境(全网最新最全)

默认已经安装好了 Anaconda 以及 PyCharm ,win + r 输入 cmd ,使用 conda --version 命令查看 Anaconda 的版本;python --version 命令查看 Python 的版本。

一、安装 CUDA

  • 检查显卡型号:计算机管理 → 设备管理器 → 显示适配器

  • win + r 输入 cmd ,使用 nvidia-smi 命令显示显卡驱动版本和 cuda 版本。

  • 安装 CUDA :

  • 配置环境变量:系统属性 → 环境变量 → 系统变量 → 双击 Path ,根据 CUDA 安装的路径新建以下几条(如果没有)。
D:\CUDA
D:\CUDA\v12.8\bin
D:\CUDA\v12.8\libnvvp

  • 验证 CUDA 是否安装成功:打开命令提示符(Win + R,输入 cmd),输入 nvcc --version 命令,如果命令行成功显示了 CUDA 的版本信息,则表明 CUDA 安装和环境变量配置已成功。

二、安装 PyTorch

1. 创建虚拟环境

参考文章:【在 Anaconda 上安装多版本 Python 环境并在 PyCharm 中配置

  • 打开 Anaconda Prompt ,输入命令 conda create -n [名称] python=[版本] 创建一个新的虚拟环境。

注意:如果想将虚拟环境放置在指定文件夹内,则以管理员身份运行 anaconda prompt ,然后运行命令:conda create --prefix [指定路径\文件名] python=[版本]

参考文件:【【anaconda】conda创建、查看、删除虚拟环境(anaconda命令集)

  • 环境创建完成后,输入命令 conda activate [环境名称] 激活该环境。

2. 安装 PyTorch

  • 验证 PyTorch 是否安装成功:确保进入已激活的 PyTorch 虚拟环境中,依次输入以下代码并执行
python  # 进入 Python 环境,若需要退出 Python 环境,请输入 exit()
import torch 
print(torch.__version__)  # 输出安装的 PyTorch 版本号
print(torch.cuda.is_available())  # 成功检测到 PyTorch 并可以使用 GPU

三、在 PyCharm 上创建一个 PyTorch 项目

  • 文件 → 新建项目

  • 验证是否成功

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kusunoki_D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值