史上最强Pandas入门教程

目录

一、前言

1. Pandas的数据结构

2. Pandas的功能

3. Pandas的应用场景

二、Series快速入门

1. 整体概述

2. 创建Series对象     

3. Series常用属性

4. Series常用函数

5. 布尔索引

6. 修改索引值

7. 运算

三、Dataframe快速入门

1. 创建DataFrame对象

2. 布尔索引

3. 索引操作

3. 1 索引列操作

3. 2 DataFrame-修改行列索引名字

3. 3 添加  、删除 、插入列

4. DataFrame常用属性

5. DataFrame常用方法

5. 1 基本函数

5. 2 去重并计数

5. 3 排序方式

四、导出和导入数据

1. 环境与相对和绝对路径问题

2. 读取数据源

3. 导出数据

4.  获取Series对象

五、加载部分数据

1. 在Dataframe对象中查看某个(些)列名下的值

2. 加载前多少行

3. 加载指定行和指定列

六、转换格式

1. 转换成ndarray格式

2. 属性格式

七、df [ [ 列名 ] ] 的应用

1. 格式

2. 应用场景

2. 1 数据探索与可视化

2. 2 数据清洗与预处理

2. 3 特征工程

2. 4 数据筛选与过滤

2. 5 5. 数据导出与共享

八、总结


一、前言

        Pandas是一个开源的Python库,它提供了快速、灵活和富有表现力的数据结构,使得关系或标记数据的操作既简单又直观。Pandas最初被设计用于金融数据分析和数据清洗任务,但现在已被广泛应用于各种数据分析和数据处理场景,包括学术、金融、统计学等各个领域。

        本文主要讲述Pandas的基础操作,教会新手如何快速入门Pandas的应用。分别从Series和Dataframe两个讲述他们的操作命令。

1. Pandas的数据结构

        Pandas的主要数据结构有两种:Series和DataFrame

  • Series可以看作是一维数组,可以包含任何数据类型(整数、字符串、浮点数、Python对象等),并且具有标签化的数据元素。
  • DataFrame则是二维标签化的数据结构,可以看作是一个表格,包含一系列的列,每列可以是不同的数据类型。
2. Pandas的功能

        Pandas具有许多强大的功能,包括高效的数据处理、数据清洗、数据转换、数据筛选和排序、数据分组和聚合、数据合并和拼接等。它内置了对时间序列的支持,可以轻松地进行时间序列的分析,并可以结合Matplotlib进行绘图。Pandas的性能也在新版本中得到了显著的提升。

3. Pandas的应用场景

        在实际的数据分析工作中,Pandas可以帮助用户处理缺失值、重复值、异常值等,进行数据筛选、排序、分组和聚合,进行各种转换和处理,如添加新的列、删除多余的列、重命名列名、替换特定的值等,还可以根据需要进行数据合并和拼接。

二、Series快速入门

1. 整体概述

2. 创建Series对象     

3. Series常用属性

4. Series常用函数

5. 布尔索引

6. 修改索引值

7. 运算

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值