GAZEBO仿真16线VLP激光雷达,并通过pointcloud_to_laserscan 将三维点云转化成二维LaserScan

该文介绍了如何在Gazebo环境中仿真VLP16激光雷达,包括下载和修改urdf文件,删除不必要的origin和joint,以及在总xacro文件中调用雷达模型。同时,提到了pointcloud_to_laserscan节点用于将三维点云转换为二维LaserScan数据,以便于在仿真中使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、gazebo仿真VLP16激光雷达

1. 下载velodyne文件

点击此处跳转Bitbucket,参考@大神yjn

可见下载后的文件夹:velodyne_simulator。

 将velodyne_simulator文件夹拷贝到工作空间下的src中。

 

其中,urdf文件中的VLP-16.URDF.xacro就是16线雷达的模型文件。

2.修改 VLP-16.URDF.xacro

实际调用中,需要对文件进行修改:

 1、把*origin删掉,不然与<xacro:insert_block name=“origin” /> 一起,会造成报错:“Not enough blocks”。
2、此处joint可以删掉,在总的xacro文件中声明joint即可,不用重复声明。
3、把parent:=base_link改为自己的机器人link名字,否则会报错。

3.在总的xacro文件中,调用此VLP16的xacro文件。

<robot name="ares_laser_gazebo" xmlns:xacro="http://wiki.ros.org/xacro">
    <!-- Included URDF Files -->
    <xacro:include filename="ares_base.xacro" />    # 声明机器人的xacro文件位置
    <xacro:ares_base />
        <!-- lidar -->
    <xacro:include filename="sensors/VLP-16.urdf.xacro" />   # 声明16线雷达的xacro文件位置

    <joint name="lidar_joint" type="fixed">         #设置joint,注意z的值
        <origin xyz="0.040036 0 0.189" rpy="0 0 0" />
        <parent link="base_link"/>
        <child link="velodyne_base_link"/>
    </joint>
    <xacro:VLP-16 />     # 调用16线雷达的宏文件


	<xacro:include filename="sensors/camera.xacro" />
    
    <xacro:include filename="sensors/kinect.xacro" />
    
	<xacro:property name="camera_offset_x" value="0" />
    <xacro:property name="camera_offset_y" value="0" />
    <xacro:property name="camera_offset_z" value="0.2" />

    <joint name="camera_joint" type="fixed">
        <origin xyz="${camera_offset_x} ${camera_offset_y} ${camera_offset_z}" rpy="0 0 0" />
        <parent link="base_link"/>
        <child link="camera_link"/>
    </joint>

	<xacro:usb_camera prefix="camera"/>


	<xacro:property name="kinect_offset_x" value="0" />
    <xacro:property name="kinect_offset_y" value="0" />
    <xacro:property name="kinect_offset_z" value="0.12" /> 

    <joint name="kinect_joint" type="fixed">
        <origin xyz="${kinect_offset_x} ${kinect_offset_y} ${kinect_offset_z}" rpy="0 0 0" />
        <parent link="base_link"/>
        <child link="kinect_link"/>
    </joint>

    <xacro:kinect_camera prefix="kinect"/>


</robot>

注意,一定在运行前重新编译,主要是为了生成激光雷达的点云产生库文件,不然后面仿真的时候会没有点云相关话题。编译一次之后就会在我们工作空间的的devel/lib文件夹下生成两个动态链接库如下:libgazebo_ros_velodyne_gpu_laser.so,libgazebo_ros_velodyne_laser.so。

 在仿真中会调用这两个库生成点云信息。

二、pointcloud_to_laserscan 将三维点云转化成二维LaserScan

参考pointcloud_to_laserscan

<think>嗯,用户的问题是关于在Gazebo中添加VelodyneVLP-16激光雷达的复杂程度以及与rs16雷达的比较。我需要仔细分析他的具体需求。用户提到了一些关键点:他想了解添加VLP-16的复杂程度、具体实现步骤,以及与rs16雷达的相似性判断。看来用户在进行某种机器人仿真项目,可能需要升级传感器系统。从引用材料看,用户提供的参考信息很有价值。引用[1]说明VLP-16仿真中会产生PointCloud2格式的点数据,且需要修改URDF和Gazebo插件。引用[3]则详细描述了VLP-16的URDF配置要求和功能特点。这些是回答的核心依据。用户的问题实际上包含三个小问题:如何添加、复杂度如何、与rs16的相似性。我需要分别处理:首先,添加方法应该分步说明,重点突出URDF修改和Gazebo插件配置这两个关键难点。关于复杂度,应该指出主要挑战在物理精度和GPU需求上,但可以强调有成熟方案参考。至于rs16的比较,两者确实都是16线雷达,但Velodyne的行业地位可能使其性能更优,不过接口相似性对仿真工作是有利的。用户可能隐含想知道"值不值得换雷达",所以比较部分要突出兼容性优势。另外要注意用户上次的问题是雷达替换,这次是新增,说明项目可能进入多传感器阶段。在回答组织上,应该先解决具体添加步骤,再分析复杂度,最后做比较。技术细节要准确,比如必须强调点格式转换的问题。最后生成的问题应该延续到后续开发难点,如融合或性能优化。</think> 以下是关于在Gazebo中添加Velodyne VLP-16激光雷达的详细解析: ### 一、添加Velodyne VLP-16的实现步骤 1. **修改URDF文件** - 在机器人模型中添加VLP-16的链接(link)和关节(joint) - 引用[3]中的关键配置: ```xml <gazebo reference="velodyne_link"> <sensor name="vlp16" type="gpu_ray"> <pose>0 0 0 0 0 0</pose> <visualize>false</visualize> <update_rate>10</update_rate> <ray> <scan> <horizontal> <samples>3600</samples> <!-- 16线水平分辨率 --> <resolution>1.0</resolution> <min_angle>0.0</min_angle> <max_angle>6.28319</max_angle> </horizontal> <vertical> <samples>16</samples> <!-- 16线垂直角度 --> <resolution>1.0</resolution> <min_angle>-0.261799</min_angle> <max_angle>0.261799</max_angle> </vertical> </scan> <range> <min>0.4</min> <max>100.0</max> <resolution>0.01</resolution> </range> </ray> <plugin name="vlp16_controller" filename="libgazebo_ros_velodyne_gpu_laser.so"> <topicName>/velodyne_points</topicName> <!-- 输出PointCloud2 --> <frameName>velodyne_link</frameName> </plugin> </sensor> </gazebo> ``` 2. **配置Gazebo插件** - 使用`gazebo_ros_velodyne_gpu_laser.so`插件生成符合VLP-16数据结构的PointCloud2消息 - 需确保Gazebo版本支持GPU加速(推荐Gazebo 9+) 3. **数据接口验证** - 成功时在Rviz中显示**3D点**而非单线雷达的2D扫描线 - 检查话题输出:`$ rostopic echo /velodyne_points | grep point_step` 应显示为 **$ point\_step = 32$**(x,y,z,intensity,ring,time字段的总字节数) --- ### 二、仿真复杂度评估 1. **技术难度** | 阶段 | 难点 | 解决方案 | |---|---|--| | 建模 | 精确物理参数配置 | 引用Velodyne官方URDF模板[^3] | | 数据 | PointCloud2格式转换 | 使用`libgazebo_ros_velodyne`插件自动处理 | | 性能 | GPU资源占用 | 启用GPU加速需NVIDIA驱动+CUDA支持 | 2. **时间成本** - 基础集成:2-4小时(熟练者) - 噪声/抖动优化:额外1-2天(需调整Gazebo噪声参数[^3]) --- ### 三、与RS16雷达的相似性对比 | 特性 | Velodyne VLP-16 | RoboSense RS16 | 兼容性 | |-----|---------------|--------------|-------| | **扫描线数** | 16线 | 16线 | ✓ 完全相同 | | **数据格式** | sensor_msgs/PointCloud2 | sensor_msgs/PointCloud2 | ✓ 100%兼容 | | **话题名称** | /velodyne_points | /rslidar_points | ✗ 需重映射 | | **垂直FOV** | $±15^\circ$ ($30^\circ$总) | $±15^\circ$ ($30^\circ$总) | ✓ 相同 | | **精度模型** | 高斯噪声[^3] | 反射强度模型 | ✗ 需参数适配 | | **安装接口** | 需自定义支架 | 标准ROS工业支架 | ✗ 需修改URDF | > 💡 **结论**:二者在核心性能(线数/FOV/数据格式)上高度相似,但**插件实现和噪声模型不同**。迁移时需重写URDF的Gazebo插件配置,但无需修改算法层代码。 --- ### 四、性能优化建议 1. **GPU加速配置** ```bash $ export GAZEBO_GPU_VENDOR=NVIDIA # 强制启用GPU加速 $ gazebo --verbose worlds/empty.world ``` 2. **多雷达融合扩展** 参考引用[2]的方法配置多雷达坐标变换: ```xml <!-- 在URDF中添加静态TF --> <node pkg="tf" type="static_transform_publisher" name="rs16_to_velodyne" args="0.5 0 0 0 0 0 base_link velodyne 10"/> ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值