第十二届蓝桥杯B组题目及题解

本文主要介绍了第十二届蓝桥杯B组竞赛的填空题和编程题。在填空题部分,讨论了精度问题、大数的公约数计算以及最短路算法,提到了Dijkstra、SPFA和Floyd算法。在编程题中,重点讲解了砝码称重问题,涉及有选择的背包问题,通过动态规划(DP)解决,提出了不正宗但能通过的数据范围限制解法,并提及了正宗的组合数解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

== 蓝桥杯B组(java 或者C)==

填空题

前两道填空题就不说了

在这里插入图片描述
这道题大多数人应该都是卡到了精度问题 double比较大小小于一定的精度我们就认为已经相等了直接上代码

#include <iostream>
#include <cstring>
#include <algorithm>
#include "cmath"

using namespace std;

typedef pair<double, double> PII;



PII l[200000];

int main(){
   
   int n = 0; 
   for (int x1 = 0; x1 < 20; x1 ++ )
        for (int y1 = 0; y1 < 21; y1 ++ )
            for (int x2 = 0; x2 < 20; x2 ++ )
                for (int y2 = 0; y2 < 21; y2 ++ )
                    if (x1 != x2)               //去掉斜率不存在的情况
                    {
                        double k = (double)(y2 - y1) / (x2 - x1);
                        double b = y1 - k * x1;
                        l[n ++ ] = {k, b};
                    }
    sort (l, l + n);
    int res = 1;
    for (int i = 1; i < n; i ++){
        if(fabs(l[i].first - l[i - 1].first) > 1e-8 || fabs(l[i].second - l[i - 1].second) > 1e-8)
           res ++;
    }
    
    cout << res + 20 <<endl;
    答案 :40257
}

在这里插入图片描述
这一道题考察的就是大数的公约数

#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>

using namespace std;

typedef long long LL;

int main()
{
    LL n;
    cin >> n;
    vector<LL> d;
    for (LL i = 1; i * i <= n; i ++ )
        if (n % i == 0)
        {
            d.push_back(i);
            if (n / i != i) d.push_back(n / i);
        }

    int res = 0;
    for (auto a: d)
        for (auto b: d)
            for (auto c: d)
                if (a * b * c == n)
                    res ++ ;
    cout << res << endl;

    return 0;
}
答案:2430

在这里插入图片描述
这道题考察的是最短路这道题是个填空题就无关选那个写了 dijskra(普通)(堆优化也可以)算法spfa
还有flyod也可以 都能过只不过跑的时间比较慢罢了
这里写spfa吧

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 2200, M = N * 50;

int n;
int h[N], e[M], w[M], ne[M], idx;
int q[N], dist[N];
bool st[N];

int gcd(int a, int b)  // 欧几里得算法
{
    return b ? gcd(b, a % b) : a;
}

void add(int a, int b, int c)  // 添加一条边a->b,边权为c 邻接表
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

void spfa()  // 求1号点到n号点的最短路距离
{
    int hh = 0, tt = 0;
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    q[tt ++ ] = 1;  //手写的队列
    st[1] = true;
    while (hh <= tt)
    {
        int t = q[hh ++ ];
        if (hh == N) hh = 0;  //保证不超
        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q[tt ++ ] = j;
                    if (tt == N) tt = 0;
                    st[j] = true;
                }
            }
        }
    }
}


int main()
{
    n = 2021;
    memset(h, -1, sizeof h);
    for (int i = 1; i <= n; i ++ )
        for (int j = max(1, i - 21); j <= min(n, i + 21); j ++ )
        {
            int d = gcd(i, j);
            add(i, j, i * j / d);
        }

    spfa();
    printf("%d\n", dist[n]);
    return 0;
}
答案:10266837
编程题
F:就不说了

在这里插入图片描述
砝码称重:考察有选择的背包问题
dp的状态转移有三种情况
1、不选择当前数字
2、选择当前数字放到左边相当于减去当前背包重量
3、选择当前数字放到右边相当于加上当前背包重量
只要这三种情况有一种方案能表示当前数字这个数字就能表示出来

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 110, M = 200010, B = M / 2;   //B为偏移量因为下表不能为负的

int n, m;
int w[N];
bool f[N][M];  //如果为true说明当前j这个数字能够表示出来

int main()
{
 scanf("%d", &n);
 for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]), m += w[i];  //得出砝码能表示的最大重量

 f[0][B] = true;
 for (int i = 1; i <= n; i ++ )
     for (int j = -m; j <= m; j ++ )
     {
         f[i][j + B] = f[i - 1][j + B];
         if (j - w[i] >= -m) f[i][j + B] |= f[i - 1][j - w[i] + B];
         if (j + w[i] <= m) f[i][j + B] |= f[i - 1][j + w[i] + B];
     }

 int res = 0;
 for (int j = 1; j <= m; j ++ )
     if (f[n][j + B])
         res ++ ;
 printf("%d\n", res);
 return 0;
}

在这里插入图片描述
这个解法不太正宗但是组合数到 32取16好像就超1e9了所以跑到这么大的数
就如果还表示不出来说明这个数只能 是当前这个数取1等于他本身(数据全过)

#include "iostream"

using namespace std;

int a[1000010][40];

void init(int n){
   a[1][0] = 1; a[1][1] = 1;
   
   for(int i = 2; i < 1000010; i ++){
       a[i][0] = 1;
       for(int j = 1; j <= i; j ++){
           a[i][j] = a[i - 1][j - 1] + a[i - 1][j];
           if(a[i][j] == n){
               cout << (long long)i * (i + 1) / 2 + 1 + j<< endl;
               return ;
           }
           if(a[i][j] < 0) break;
       }
   } 
   cout << (long long)n * (n + 1) /2 + 2 << endl;
}



int main(){
    int n;
    cin >>n;
    if(n == 1) {
        cout << 1 << endl;
        return 0;
    }
    init(n);
    
    
    
}

正宗正解 :利用组合数

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

int n;

LL C(int a, int b)
{
    LL res = 1;
    for (int i = a, j = 1; j <= b; i --, j ++ )
    {
        res = res * i / j;
        if (res > n) return res;
    }
    return res;
}

bool check(int k)
{
    LL l = k * 2, r = max((LL)n, l);
    while (l < r)
    {
        LL mid = l + r >> 1;
        if (C(mid, k) >= n) r = mid;
        else l = mid + 1;
    }
    if (C(r, k) != n) return false;

    cout << r * (r + 1) / 2 + k + 1 << endl;

    return true;
}

int main()
{
    cin >> n;
    for (int k = 16; ; k -- )
        if (check(k))
            break;
    return 0;
}

后面的题实在是有点难可以骗骗分就走吧

### 关于第十四蓝桥杯 Python B题解析 目前提供的引用主要集中在第十五蓝桥杯的相关内容[^1],并未直接提及第十四的具体题目及其解析。然而,通过分析往年的竞赛特点以及常见的算法考察方向,可以推测出一些可能涉及的知识点和解题思路。 #### 蓝桥杯 Python B常见考点 蓝桥杯 Python B通常会覆盖以下几个方面: - **基础语法**:字符串操作、列表推导式、字典应用等。 - **数据结构**:栈、队列、链表的基础实现与运用。 - **算法设计**:动态规划、贪心算法、回溯法等经典算法的应用。 - **数学问题**:数论基础知识(如最大公约数、最小公倍数)、排列合等问题。 以下是基于以往经验总结的一些典型题目类型及解答方法: #### 示例一:字符串处理类问题 假设有一道关于字符串匹配或者替换的操作题,则可采用如下方式解决: ```python def string_operation(s, old_substring, new_substring): result = s.replace(old_substring, new_substring) return result s = input().strip() old_substring = input().strip() new_substring = input().strip() print(string_operation(s, old_substring, new_substring)) ``` 此代码片段展示了如何利用 `replace` 方法完成简单的字符串替换功能[^2]。 #### 示例二:数遍历求最值 如果遇到求数中的某些特定条件下的极值情况时,可以用循环迭代来达成目标: ```python numbers = list(map(int, input().split())) max_value = max(numbers) min_value = min(numbers) print(f"Max Value: {max_value}, Min Value: {min_value}") ``` 上述例子简单明了地体现了获取输入序列的最大值与最小值的过程。 尽管无法提供确切的第十四试题详情,但从这些通用技巧出发能够帮助准备类似的赛事挑战。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值