VGG-Deep Convolutional Network for Large-Scal Image Recognition 大规模图像识别的卷积网络
文章目录
1.背景介绍
VGGNet探索了卷积神经网络的深度与其性能之间的关系。构建了16-19层深的卷积神经网络,证明了增加网络的深度能够在一定程度上影响网络的最终性能,使得错误率大幅下降,同时拓展性又很强,迁移到其他图片数据上的泛化能力也非常好。
VGGNet是AlexNet的加强版,也是由卷积层和全连接层两大部分组成。
2.网络配置
网络结果如图1所示,输入固定尺寸224224的RGB图像,做了唯一的预处理就是从每个像素中减去根据训练集计算的平均RGB值。图像经过一堆卷积层传递,使用33的过滤器。在其中一种配置中,还使用了11的卷积滤波器,可以将其视为输入通道的线性变换。卷积步长固定为1像素,卷积层的输入空间填充使卷积后的空间分辨率保持不变,即33个卷积层的填充为1像素。有5个池化层,最大池在2*2的窗口上执行,步长为2.最后是3个全连接层,前两个各有4096个通道,第三个有1000个通道。最后是Softmax层。
论文中ConNet配置在表1中列出,从网络A中的11个权重层(8个卷积和3个FC层)到网络E中的19个权重层(16个卷积层和3个FC层)。通道的数量比较小,从第一层的64个开始,在每