VGG论文笔记

VGG-Deep Convolutional Network for Large-Scal Image Recognition 大规模图像识别的卷积网络

1.背景介绍

VGGNet探索了卷积神经网络的深度与其性能之间的关系。构建了16-19层深的卷积神经网络,证明了增加网络的深度能够在一定程度上影响网络的最终性能,使得错误率大幅下降,同时拓展性又很强,迁移到其他图片数据上的泛化能力也非常好。
VGGNet是AlexNet的加强版,也是由卷积层和全连接层两大部分组成。

2.网络配置

图1
网络结果如图1所示,输入固定尺寸224224的RGB图像,做了唯一的预处理就是从每个像素中减去根据训练集计算的平均RGB值。图像经过一堆卷积层传递,使用33的过滤器。在其中一种配置中,还使用了11的卷积滤波器,可以将其视为输入通道的线性变换。卷积步长固定为1像素,卷积层的输入空间填充使卷积后的空间分辨率保持不变,即33个卷积层的填充为1像素。有5个池化层,最大池在2*2的窗口上执行,步长为2.最后是3个全连接层,前两个各有4096个通道,第三个有1000个通道。最后是Softmax层。
图1
论文中ConNet配置在表1中列出,从网络A中的11个权重层(8个卷积和3个FC层)到网络E中的19个权重层(16个卷积层和3个FC层)。通道的数量比较小,从第一层的64个开始,在每

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值