题目描述
N<k时,root(N,k) = N,否则,root(N,k) = root(N’,k)。N’为N的k进制表示的各位数字之和。输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000)
输入描述:
每组测试数据包括一行,x(0<x<2000000000), y(0<y<2000000000), k(2<=k<=16)
输出描述:
输入可能有多组数据,对于每一组数据,root(x^y, k)的值
示例1
输入
4 4 10
输出
4
#include <stdio.h>
#include <string.h>
#define lenMAX 11
int Sum(int x,int k);
int FP(int x,int n,int y);
int root(int N,int k);
int main(){
int x,y,k;
while(scanf("%d %d %d",&x,&y,&k)!=EOF){
int i;
int sum=Sum(x,k); //先求系数和 再幂次y,和先幂次 再求系数和 是一样的效果
int N=FP(sum,y,k);
int r=root(N,k);
if(r==0) r=k-1;
printf("%d\n",r);
}
return 0;
}
int Sum(int x,int k){ //各位系数和
int sum=0;
while(x!=0){
sum+=(x%k);
x/=k;
}
return sum;
}
int FP(in