DSSAT模型: 遥感数据与作物生长模型同化及在作物长势监测与估产中的应用

文章探讨了遥感数据如HJ、GF、ZY、MODIS等在作物生长监测中的作用,结合DSSAT模型进行数据同化,以改善模型在区域尺度上的不确定性。通过Fortran语言实现数据同化算法,目标包括掌握遥感与作物模型的耦合、参数敏感性分析和产量监测。该技术旨在提升农业信息技术的应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

查看原文>>>遥感数据与作物生长模型同化及在作物长势监测与估产中的应用

基于过程的作物生长模拟模型DSSAT是现代农业系统研究的有力工具,可以定量描述作物生长发育和产量形成过程及其与气候因子、土壤环境、品种类型和技术措施之间的关系,为不同条件下作物生长发育及产量预测、栽培管理、环境评价以及未来气候变化评估等提供了定量化工具。但是,当作物生长模型从单点研究发展到区域尺度应用时,由于空间尺度增大而出现的地表、近地表环境非均匀性问题,导致模型中一些宏观资料的获取和参数的区域化方面存在很多困难,模型模拟结果也会存在很大的不确定性,而遥感信息在很大程度上可以帮助作物生长模型克服这些不足。

国产卫星(如HJ、GF、ZY)、MODIS、Landsat、Sentinel-2等遥感数据是进行大范围作物生长状态监测的有效手段;作物生长模型能够利用环境因素模拟作物生长过程,揭示作物生长发育的原因与本质。随着科学技术发展和农业应用需求的驱动,数据同化方法将遥感数据与作物生长模型相结合,监测作物长势及预测作物产量,是当前农业信息技术应用研究的重要内容和发展趋势之一。二者结合既能提供宏观监测信息,又可动态反映作物生长发育过程,有利于实现优势互补,提升应用潜力。

数据同化方法的实现需要在源代码基础上操作,鉴于DSSAT作物模型的源代码为Fortran语言,本文操作主要基于Fortran语言且计算机需为专业版Windows操作系统。

【目标】:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值