YOLOv5训练自定义的烟火数据集和COCO2017数据集

本文详细介绍了如何使用YOLOv5训练自定义的烟火数据集和COCO2017数据集。首先,详细讲述了自定义数据集的准备过程,包括数据集结构、yaml文件创建和修改、train.py及test.py的调整。接着,讲解了COCO2017数据集的下载、标注文件放置以及yaml文件的配置。最后,提到了训练的开始。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 训练自定义数据集

1、准备数据集

在这里插入图片描述
(1)数据集具体结构内容如下:
yolov5/data/images存放训练的jpg图片
yolov5/data/annotations存放对应图片标注的xml文件
yolov5/data/ImageSets新建Main文件夹存放划分的训练集、测试集等文件

(2)运行voc2yolo5.py生成划分的训练集、测试集等文件

import os
import random 

xmlfilepath=r'annotations'
saveBasePath=r"ImageSets/Main/"

trainval_percent=0.66
train_percent=0.5

temp_xml = os.listdir(xmlfilepath)
total_xml = []
for xml in temp_xml:
  if xml.endswith(".xml"):
    	total_xml.append(xml)

num=len(total_xml)  
list=range(num)  
tv=int(num*trainval_percent)  
tr=int(tv*train_percent)  
trainval= random.sample(list,tv)  
train=random.sample(tra
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值