- 博客(53)
- 资源 (6)
- 收藏
- 关注

原创 Python 图像分类入门
图像分类作为深度学习的基础任务,旨在将输入图像划分到预定义的类别集合中。在实际的业务中,图像分类技术是比较常用的一种技术技能。例如,在安防监控中,可通过图像分类识别异常行为;在智能交通系统中,实现对交通标志和车辆类型的快速识别等。本文将通过安装包已有数据带你逐步了解使用 Python 进行图像分类的全过程。。
2025-07-01 10:28:22
1378

原创 初始CNN(卷积神经网络)
卷积神经网络(CNN)是深度学习的核心算法,在图像识别、目标检测等领域表现卓越。与传统人工特征提取方法不同,CNN通过模拟人类视觉系统自动学习图像特征。其核心组件包括:卷积层(特征提取)、池化层(降维处理)、全连接层(分类输出)和激活函数(引入非线性)。典型工作流程为数据预处理、特征提取学习、分类输出。CNN广泛应用于图像识别(如医疗诊断)、目标检测(如自动驾驶)、语义分割(如智慧城市)等领域,推动了人工智能技术的突破性发展。
2025-06-30 16:05:04
1274
原创 解锁图片增强的奥秘:提升计算机视觉模型性能的关键技术
在计算机视觉领域,模型的训练效果在很大程度上依赖于数据的质量和多样性。然而,实际应用中获取大规模、多样化的标注数据往往成本高昂且耗时费力。图片增强技术应运而生,它通过对原始图片进行一系列变换生成新的训练样本,有效扩充数据集,提升模型的泛化能力。本文将结合代码,详细介绍图片增强的常见方法及其实现。
2025-07-14 13:51:38
462
原创 【机器学习】图片分类中增强常用方式详解以及效果展示
图片增强是计算机视觉任务中非常重要的一环,通过上述几种常见的图片增强方式,可以有效地扩充数据集,提高模型的泛化能力。在实际应用中,可以根据具体任务和数据特点选择合适的增强方式,也可以将多种增强方式组合使用,以获得更好的效果。希望本文能帮助你更好地理解和应用图片增强技术。
2025-07-14 12:55:04
437
原创 (2)从零开发 Chrome 插件:实现 API 登录与本地存储功能
通过本文的示例,掌握了 Chrome 插件调用 API 实现登录并存储用户信息的核心流程。这个基础框架可以扩展出更多功能,例如:自动携带 Token 调用其他 API、定期检查登录状态、多账号管理等。Chrome 插件开发的核心是理解其配置规则和 API 特性,结合前端基础知识,就能快速实现各种实用工具。希望本文能帮助你迈出插件开发的第一步!
2025-07-13 17:12:16
623
原创 (2)当 AI 是徒弟:铁匠师傅的引导式干活法
AI时代的编程智慧:铁匠铺的启示 传统编程与AI协作就像铁匠铺里的师徒配合。老师傅(程序员)运用小锤(精准引导),通过轻敲调整参数、提供示例,来引导徒弟(AI模型)发力;而徒弟(AI)则发挥蛮力优势执行任务。二者的核心区别在于:传统方法强调精准控制每一步,而AI方法需要先让模型尝试,再针对性调整。编程智慧在于:1)精准引导而非蛮力控制;2)明确能力边界,不盲目接单;3)针对性修正而非推倒重来。这种"轻敲引导"的协作模式,比单纯依赖人力或AI都更高效。
2025-07-13 10:00:28
110
原创 (1)当代码遇上大模型:程序员如何从 “控制者” 变 “引导者”?
事情传统编程思维大模型思维看结果必须百分百对差不多就行,别太离谱接任务要么全干,要么不干能干的干,不能干的老实说改错误记下来就完了统计哪错得多,先改哪就像学做饭:传统思维是 “必须按菜谱放 3 克盐”,大模型思维是 “尝着咸淡差不多就行”—— 不用一开始就追求完美,先学会灵活调整,反而更容易上手。
2025-07-12 22:13:32
150
原创 漫谈常见模型:江湖雅号
卷积神经网络在图像江湖中被誉为 “拼图圣手”,它最擅长将复杂的图像拆解成无数细小的碎片,再凭借独特的章法重新拼凑出真相。当一张猫咪图片摆在面前,它不会囫囵吞枣地打量整体,而是先派出 “卷积核小卒”,有的专门捕捉猫咪的胡须线条,有的专注识别毛茸茸的耳朵轮廓,还有的负责探查明亮的眼睛区域。这些小卒各司其职,把图像分割成一个个局部特征,就像把拼图拆成小块。接着,“池化高手” 登场,将重复的碎片合并精简,保留最关键的信息。最后,经过层层传递与重组,原本杂乱的像素碎片在它手中变成清晰可辨的猫咪形象。
2025-07-12 14:02:03
833
原创 (1)从零开发 Chrome 插件:构建你的第一个插件
Chrome插件是用HTML、CSS和JavaScript编写的小型程序,可以扩展Chrome浏览器的功能。修改网页外观和内容添加工具栏按钮和菜单监听浏览器事件并作出响应与网站API交互存储和检索数据完成了一个简单Chrome插件的开发过程。
2025-07-12 12:06:59
419
原创 使用 Python 对本地图片进行图像分类
在完成图像分类的入门学习后,若要利用本地图片开展分类任务,需针对数据处理与模型应用流程进行专门调整。下面将详细阐述从数据准备到模型预测,使用本地图片进行图像分类的具体方法。
2025-07-11 18:30:56
1170
原创 (7)机器学习小白入门 YOLOv:机器学习模型训练详解
模型通过一个称为反向传播的过程反复进行预测、计算误差和更新参数。在此过程中,模型会调整其内部参数 (weights and biases) 以减少误差。通过多次重复这一循环,模型逐渐提高了准确性。随着时间的推移,它就能学会识别形状、颜色和纹理等复杂模式。# 定义模型的训练配置参数config = {"epochs": 100, # 总共训练多少轮"imgsz": 640, # 图像缩放大小"batch_size": 16, # 每次送入网络的数据量(影响训练速度和内存占用)
2025-07-11 13:37:18
549
原创 expect 安装入门手册
expect 是一款自动化交互套件,也是交互性很强的脚本语言,主要应用于执行命令和程序时,当系统以交互形式要求输入指定字符串时,它能实现交互通信,可帮助运维人员实现对成千上百台服务器的批量管理操作,是一款实用的批量部署工具。expect 依赖于 tcl,而 Linux 系统通常不自带 tcl,因此需要手动安装 tcl 后再安装 expect。
2025-07-10 23:13:06
1032
原创 (6)机器学习小白入门 YOLOv:图片的数据预处理
本文介绍了YOLO目标检测模型的数据预处理全流程。主要包括:1)YOLO数据集结构要求,包括标准文件夹格式、图片命名规范和标签文件格式;2)核心预处理技术,如图像标准化、像素归一化、标签标准化处理以及数据增强方法;3)使用LabelImg等工具生成标签的转换方法。文章还提供了完整的预处理流程图和步骤总结,帮助机器学习初学者掌握从原始数据到YOLO可训练数据集的完整转换过程,为后续模型训练奠定基础。
2025-07-10 13:33:37
772
原创 (八)PS识别:使用 Python 自动化生成图像PS数据集
通过 Python 与 Photoshop 的结合,我们可以轻松实现图像数据集的自动化生成。这种方法不仅提高了工作效率,还能生成具有丰富多样性的图像,后面通过这种方式优化再开发,在图片的训练模型项目可以大展拳脚。
2025-07-09 21:32:14
878
原创 (5)机器学习小白入门 YOLOv:数据需求与图像不足应对策略
摘要: YOLO模型训练所需图像数量取决于任务复杂度(简单任务需数百张,复杂任务需上万张)和模型大小(小模型需数千张,大模型需数万张)。数据不足时可采取以下策略:1)合成虚拟数据;2)数据增强(翻转、旋转等);3)迁移学习(复用预训练模型);4)半监督学习(结合无标注数据)。实际应用需灵活选择方法,平衡数据量与模型性能。
2025-07-09 14:37:08
933
原创 (4)机器学习小白入门YOLOv :图片标注实操手册
对于熟悉 Python 和 YOLOv 的资深程序员而言,图片标注是模型训练前至关重要的环节,其质量直接影响模型的检测精度。以下是详细的标注过程、步骤及相关实例代码:一、标注前的准备工作。
2025-07-08 20:57:12
1417
原创 Flask 解决 JSON 返回中文乱码问题方案
Flask解决JSON中文乱码方案 在Flask开发中,API返回中文时默认会转换为Unicode转义序列。本文提供5种解决方案: 全局配置:设置app.config['JSON_AS_ASCII'] = False,简单高效 自定义JSON编码器:继承DefaultJSONProvider,扩展性强 手动序列化:使用json.dumps(ensure_ascii=False)配合Response对象 装饰器处理:批量处理多个接口的返回数据 Nginx配置:在生产环境通过服务器设置响应头 所有方案核心都是通
2025-07-08 11:22:45
504
原创 (七)PS识别:解决图片水印干扰-提升 PS 检测准确性的技术方案
图片 PS 痕迹检测工具时遇到了一个棘手的问题:图片中的水印常常被误判为 PS 痕迹,导致检测结果失真。明明只是正常的水印,却被算法标记为 “疑似修改”,这不仅影响了检测效率,更可能导致错误的判断。
2025-07-07 19:48:45
1301
原创 (六)PS识别:源数据分析- 挖掘图像的 “元语言”技术实现
本文介绍了利用Python进行PS图片识别的技术方案,重点阐述了PSExifChecker类的实现原理。该工具通过分析EXIF元数据(如软件信息、设备型号)、图像分辨率、文件格式等多维度特征,综合判断图片是否经过Photoshop处理或为截图。核心方法包括:元数据分析(检测Photoshop软件痕迹)、截图特征识别(分辨率比对)、文件类型校验等。虽然具有多维度检测的优势,但存在误判风险、仅支持JPEG/TIFF格式的局限性。该技术为数字图像真实性鉴定提供了自动化检测思路,但在算法精度和兼容性方面仍有提升空间
2025-07-07 09:41:50
704
原创 (3)机器学习小白入门 YOLOv: 解锁图片分类新技能
(1)机器学习小白入门YOLOv :从概念到实践(2)机器学习小白入门 YOLOv:从模块优化到工程部署YOLOv 算法通常被用于目标检测任务,但通过对其进行适当的调整和改造,也能够满足图片分类的需求。接下来,我将基于之前 YOLOv 的开发框架,详细介绍如何利用它实现图片分类。
2025-07-06 11:31:39
595
原创 漫谈常见机器学习算法:江湖诨号
本文用武侠江湖的比喻生动介绍了常见的机器学习算法。最近邻算法像"跟风侠"简单跟随多数意见;线性模型如"算账先生"精于数值计算;朴素贝叶斯是凭经验的"算命先生";决策树是爱问问题的"机灵鬼";随机森林则是集体决策的"江湖帮派";梯度提升决策树像追求完美的"学霸";支持向量机是精准"划界大师";神经网络则是深藏不露的"扫地僧"。每种算法都有其特点和适用场
2025-07-06 09:47:06
774
原创 dnSpy 使用教程
dnSpy 是一款功能强大的免费开源.NET 反编译工具,支持对.NET Framework、.NET Core 和 Mono 程序进行反编译、调试与修改,能将程序集反编译为 C# 或 IL(中间语言)代码,帮助开发者或安全研究人员深入分析和理解.NET 程序的内部逻辑。它为逆向工程工作提供了极大便利,使相关操作更易于理解和执行。与之类似的 ILspy 也是一款知名的开源.NET 反编译软件,下面将对二者进行对比分析。
2025-07-05 20:37:02
1128
原创 (2)机器学习小白入门 YOLOv:从模块优化到工程部署
在完成《机器学习小白入门 YOLOv:从概念到实践》的学习后,我们已经掌握了 YOLOv 的基础概念、环境搭建及基础运行操作。本指南将聚焦于 YOLOv 在实际开发中的进阶内容,助力开发者深入理解和应用 YOLOv 进行目标检测项目开发。
2025-07-05 11:42:25
454
原创 (1)机器学习小白入门 YOLOv:从概念到实践
本文介绍了目标检测算法YOLOv的入门指南。YOLOv以"一步到位"的核心思想,通过单次网络预测实现快速高效的目标检测,广泛应用于安防、自动驾驶等领域。文章详细讲解了YOLOv的发展历程、环境搭建(包括硬件要求和Python/PyTorch安装)、预训练模型的使用方法,以及如何运行检测代码进行实时目标识别。此外,还解析了YOLOv的代码结构,并指导读者如何准备数据集、配置参数来训练自己的YOLOv模型。通过本文,初学者可以快速掌握YOLOv的基本原理和实践应用,为进一步学习目标检测技术奠
2025-07-05 09:52:30
974
原创 Bitvisse SSH Client 安装配置文档
加载配置文件后,点击 “Log in” 按钮,软件将根据配置信息尝试连接到远程服务器,连接成功后即可进行相应操作。点击 “Load profile” 按钮,在弹出的文件列表中选择之前保存的配置文件,将其加载到软件中。在软件界面中,点击 “New profile” 按钮,创建新的配置文件,并为其命名,方便后续识别和管理。双击下载完成的.exe 文件,启动安装向导,按照安装向导的提示逐步操作,即可完成软件的安装。完成上述配置后,点击 “Save profile” 按钮,将配置文件进行保存,以便后续使用。
2025-07-04 21:32:36
444
原创 (五)PS识别:压缩痕迹挖掘-压缩量化表与 DCT 系数分析
本文介绍了一种基于量化表分析和DCT系数分析的图片PS检测方法。通过分析JPEG图片的量化表数值分布差异以及DCT变换后低频系数的方差特征,来判断图片是否经过PS处理。文章详细阐述了算法原理,并提供了Python实现代码,封装成可调参数的PSImageAnalyzer类。该方法通过量化表最大差异阈值和DCT低频系数方差阈值等参数调整检测敏感度,为图片真实性鉴定提供了一种有效工具。虽然不能完全准确判断,但为识别PS痕迹提供了新的技术思路。
2025-07-04 15:11:18
373
原创 (四)PS识别:基于边缘纹理检测分析PS识别的技术实现
本文介绍了一种基于 Python 的图像 PS 处理检测方法,通过分析图像的边缘特征和边缘梯度直方图,结合预设的阈值进行综合判断。同时,详细探讨了数字参数大小对 PS 判断结果的影响,不同的参数设置会在误判率和漏判率之间取得不同的平衡。在实际应用中,需要根据具体的场景和需求,通过实验不断调整这些参数,以达到最佳的检测效果。需要注意的是,该方法并非绝对准确,因为不同的图像处理操作可能会产生不同的边缘特征和直方图信息。在实际应用中,可能需要结合更多的特征和方法来提高检测的准确性。
2025-07-04 11:16:21
967
原创 从生活实例看:点积、内积和矩阵乘法如何玩转机器学习
本文通过生活化例子介绍了点积、内积和矩阵乘法在机器学习中的关键作用。点积衡量向量相似度,用于推荐系统和神经网络;内积是点积的扩展,在支持向量机和度量学习中发挥重要作用;矩阵乘法则是神经网络和降维算法的基础运算。三者在机器学习中密切配合,点积是矩阵乘法的基本单元,内积是其高级形式。理解这些数学工具的工作原理,有助于更好地应用机器学习解决实际问题。
2025-07-03 21:06:03
693
原创 (三)PS识别:基于噪声分析PS识别的技术实现
通过本文的介绍,我们了解了基于图像噪声分析检测图片编辑痕迹的原理、实现方法以及相关参数对检测结果的影响。希望大家在享受数字图像处理带来便利的同时,也能更加重视图像的真实性,让这项技术成为维护数字世界真实的有力工具。在实际应用中,合理调整参数,以达到最佳的检测效果。
2025-07-03 17:42:09
894
原创 (一)PS识别: Python 图像分析PS识别之道
本文将从源数据分析、像素与噪声特征剖析、边缘纹理检测、压缩痕迹挖掘及机器学习应用等维度,结合具体 Python 代码,深入探讨 PS 处理图片的识别方法。异常峰值、截断现象或多峰不连续分布,如过度曝光图片的高像素区尖锐峰值、拼接图片的多峰离散分布,均是 PS 处理的可疑信号。不自然的断裂、锯齿,或与物体形态不符的边缘,如抠图后残留的虚化、错位边缘,均是 PS 处理的有力证据。,但检测出为其他格式,或类型信息模糊不清,可能是格式转换、编辑导致,需进一步排查。# 可计算DCT系数的统计特征,如均值、方差等。
2025-07-03 09:14:10
852
原创 SSH 升级避坑指南:从依赖到配置的深度优化
摘要:本文详细介绍了OpenSSH升级流程,包含7个关键步骤:(1)下载依赖包并上传服务器;(2)获取OpenSSL安装包;(3)强制安装所有依赖项;(4)备份配置文件;(5)解压并配置编译参数;(6)处理编译权限错误;(7)修改配置并启动服务。特别强调了对密钥文件权限的修正(chmod 600)、sshd_config的参数调整(如开启PasswordAuthentication),以及处理systemd服务不兼容的解决方案。最后提供了禁用scp命令的安全加固方法。整个过程需谨慎处理依赖关系,并建议操作前
2025-07-02 13:45:56
850
原创 (二)PS识别: 特征识别-直方图分析的从原理到实现
无论是社交媒体上的精美自拍,还是广告宣传中的产品图片,都可能经过了精心的 PS 处理。通过直方图分析、元数据检查和边缘检测等方法,我们可以有效地识别出 PS 处理的痕迹。本文通过 Python 代码实现了一个简单的 PS 特征识别程序,你可以根据实际需求调整阈值参数,以提高识别的准确性。需要注意的是,PS 特征识别技术并不是 100% 准确的,一些高级的 PS 处理技术可能会掩盖这些特征。:综合分析图像的直方图和边缘信息,判断图片是否经过了 PS 处理,并返回判断结果、提示信息和标注后的图像。
2025-07-02 10:05:53
263
原创 30秒看懂卷积神经网络
卷积神经网络(CNN)是图像识别的核心技术,通过四大核心组件实现智能识别。卷积层像"特征侦探",用滑动窗口提取图像特征;池化层是"瘦身专家",压缩数据保留关键信息;全连接层作为"裁判团"汇总特征投票分类;激活函数赋予网络非线性处理能力。CNN广泛应用于人脸识别、自动驾驶和医疗诊断等领域,通过多层特征提取和分类决策,实现了从简单线条到复杂物体的精准识别。这一技术让机器真正"看懂"图像,成为现代AI应用的重要基础。
2025-07-01 11:59:58
316
原创 初识 one-hot 编码形式
One-hot编码是将分类变量转换为数值向量的一种方法,每个类别对应一个唯一位置为1、其余为0的向量。其优点包括简单直观、避免错误排序和易于结合机器学习算法;缺点是数据稀疏和维度增加。应用场景涵盖文本处理、图像识别和数据预处理等领域。Python中可用pandas或Scikit-learn库实现该编码。虽然one-hot编码是基础技术,但需注意在高维情况下的局限性。
2025-06-30 11:57:29
913
原创 pyenv-win 配置指南
《Windows平台Python版本管理工具pyenv-win配置指南》 摘要:本文详细介绍了Windows环境下使用pyenv-win管理多版本Python的完整方案。首先说明安装前的Git和Python环境准备,随后提供三种安装方式:PowerShell脚本安装、手动安装及包管理器安装,并针对各类安装问题给出解决方案。重点讲解环境变量配置方法,包括PYENV、PYENV_HOME等关键变量的设置。在版本管理方面,涵盖安装/卸载特定版本、全局/局部版本设置及临时切换等核心功能,特别强调镜像加速和缓存清理等
2025-06-26 18:03:56
688
原创 点积、内积和矩阵乘法比较和机器学习中的应用
本文探讨了向量点积、内积与矩阵乘法的数学特性及其在机器学习中的应用。点积用于计算投影长度与向量夹角,应用于线性回归和相似度计算;内积可定义广义空间度量,支持核方法与高维映射;矩阵乘法表示线性变换复合,是神经网络、PCA等技术的核心。通过Python代码示例展示了具体实现,包括几何验证和机器学习应用(如线性回归预测)。这些运算为机器学习提供了核心数学工具,支撑了从基础模型到复杂架构的各类算法实现。
2025-06-26 13:26:41
411
原创 向量运算、矩阵运算、线性变换相关运算
摘要:线性代数核心运算包括向量运算(加法、点积、叉积)和矩阵运算(乘法、转置、求逆、行列式),以及特征值分解和奇异值分解。向量运算用于空间基础构建和方向关系分析,矩阵运算实现数值化变换,而特征分解与SVD揭示数据内在结构。这些运算在机器学习、计算机图形学等领域广泛应用,理解其几何意义和代数性质是关键。Python的NumPy库提供了这些运算的高效实现。
2025-06-25 17:29:01
883
原创 标量、向量和张量的区别与联系
摘要:本文系统介绍了标量、向量和张量三种数据类型。标量是0维的单一数值(如温度、质量);向量是1维的有序数值集合,具有方向性(如速度、特征向量);张量是高维推广,包括矩阵及多维数组(如视频数据、神经网络权重)。三者逐级扩展,标量是0阶张量,向量为1阶张量。文章对比了它们的维度特征、运算方式和应用场景,并指出张量在深度学习、物理等领域的核心作用。编程中常用NumPy、PyTorch等工具处理这些数据结构。(149字)
2025-06-25 16:06:08
778
原创 MYSQL 高级查询(最大值)与批量删除操作详解
摘要:本文介绍了两种SQL查询方法和一个批量删除操作。方法1通过LEFT JOIN查询表中每个名称对应的最新日期记录,方法2使用子查询和MAX函数实现相同功能。批量删除操作展示了一个复杂场景下的删除逻辑:保留每小时每个设备的最新记录,删除其他记录。该操作通过NOT IN子句和嵌套查询实现,涉及日期格式化分组和多重连接条件。这些SQL技巧适用于数据去重和保留最新记录的常见业务需求。
2025-06-11 10:20:26
107
原创 聚类算法的对比与评估
摘要:常见聚类算法对比分析显示,K-Means适合凸球型数据但需预设K值,层次聚类可展示数据结构但计算量大,DBSCAN能识别任意形状簇但对参数敏感。评估方法分为真实值评估(ARI/NMI)和无监督评估(轮廓系数)。算法选择需考虑数据特性、聚类目标、计算资源和可解释性等因素,不同场景适用不同方法。(149字)
2025-06-10 15:42:11
416
服务器硬盘扩容风险评估:业务连续性与数据安全保障的技术方案
2025-07-07
【网络安全与远程访问】Bitvise SSH Client安装配置与使用指南:Windows系统远程管理及文件传输解决方案
2025-07-04
DotNetFX-NET Framework 4.5.2
2025-07-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人