Mindspore-训练模型

本文介绍了MindSpore AI框架的模型训练过程,包括构建数据集、定义模型、配置超参数、理解训练流程、选择损失函数以及开始训练的详细步骤。此外,还提及MindSpore的易用性和跨场景适应性,以及在华为开发者大会2020上的开源发布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

MindSpore:新一代AI开源计算框架。

创新编程范式,AI科学家和工程师更易使用,便于开放式创新;该计算框架可满足终端、边缘计算、云全场景需求,能更好保护数据隐私可开源,形成广阔应用生态

2020年3月28日,华为在开发者大会2020上宣布,全场景AI计算框架MindSpore在码云正式开源。

MindSpore着重提升易用性并降低AI开发者的开发门槛,MindSpore原生适应每个场景包括端、边缘和云,并能够在按需协同的基础上,通过实现AI算法即代码,使开发态变得更加友好,显著减少模型开发时间,降低模型开发门槛。通过MindSpore自身的技术创新及MindSpore与华为昇腾AI处理器的协同优化,实现了运行态的高效,大大提高了计算性能;MindSpore也支持GPU、CPU等其它处理器。

一、训练模型

(1)步骤

  1. 构建数据集。

  2. 定义神经网络模型。

  3. 定义超参、损失函数及优化器。

  4. 输入数据集进行训练与评估。

(2)开发前提

我们在使用这个框架进行模型训练的时候,我们必须在数据集和网络构建中加载一些代码,这是为了后面测试的时候可以更好地针对性训练,也是对数据训练更完整做了一个前提准备的过程。

import mindspore
from mindspore import nn
from mindspore import ops
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

# Download data from open d
### 使用MindSpore框架构建和训练CNN模型 #### 构建CNN模型 为了使用MindSpore构建一个简单的卷积神经网络(CNN),可以定义一个继承自`Cell`类的新类,在其构造函数中初始化所需的层,如卷积层、池化层以及全连接层。下面是一个基本的例子[^2]: ```python import numpy as np from mindspore import nn, Tensor from mindspore.nn import Cell class SimpleCNN(Cell): def __init__(self): super(SimpleCNN, self).__init__() # 定义卷积层与激活函数ReLU组合 self.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, pad_mode='same', activation="relu") self.pool = nn.MaxPool2d(kernel_size=2, stride=2) # 更多的卷积层... # 将特征图展平为一维向量准备输入给全连接层 self.flatten = nn.Flatten() # 定义全连接层用于分类任务 self.fc = nn.Dense(in_channels=64 * 8 * 8, out_channels=10) # 假设图像大小被缩小到8*8 def construct(self, x): batch_size = x.shape[0] x = self.conv1(x) x = self.pool(x) # 添加更多类似的conv-pool操作... x = self.flatten(x) output = self.fc(x.view(batch_size, -1)) return output ``` 此代码片段展示了如何创建一个具有单个卷积层和最大池化的简单CNN架构。 #### 准备数据集并加载器 在实际应用之前,还需要准备好合适的数据集,并通过`Dataset` API将其转换成可迭代的形式供后续训练过程调用[^1]: ```python from mindspore.dataset import GeneratorDataset def create_dataset(data_path, batch_size=32): dataset = GeneratorDataset(source=data_generator_function, column_names=["image", "label"], sampler=None) transform_img = [ vision.Decode(), vision.Resize((224, 224)), vision.ToTensor(), vision.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]) ] dataset = dataset.map(input_columns="image", operations=transform_img) dataset = dataset.shuffle(buffer_size=batch_size) dataset = dataset.batch(batch_size, drop_remainder=True) return dataset ``` 这里假设有一个名为`data_generator_function`的功能能够生成图片及其标签对;同时进行了必要的预处理步骤,比如调整尺寸、解码、标准化等。 #### 训练模型 最后一步就是编写训练逻辑了。这通常涉及到损失函数的选择、优化器配置等方面的工作: ```python net = SimpleCNN() loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') opt = nn.Adam(params=net.trainable_params(), learning_rate=0.001) model = Model(net, loss_fn=loss_fn, optimizer=opt) dataset_train = create_dataset('/path/to/train/data') # 开始训练 model.train(epoch=10, train_dataset=dataset_train, callbacks=[LossMonitor()]) ``` 上述脚本设置了一个Adam优化器配合Softmax交叉熵作为损失计算方式来进行监督学习下的参数更新流程。此外还指定了监控回调以便观察每轮次结束后的平均损失变化情况。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

跳楼梯企鹅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值