前言
创新编程范式,AI科学家和工程师更易使用,便于开放式创新;该计算框架可满足终端、边缘计算、云全场景需求,能更好保护数据隐私;可开源,形成广阔应用生态。
2020年3月28日,华为在开发者大会2020上宣布,全场景AI计算框架MindSpore在码云正式开源。
MindSpore着重提升易用性并降低AI开发者的开发门槛,MindSpore原生适应每个场景包括端、边缘和云,并能够在按需协同的基础上,通过实现AI算法即代码,使开发态变得更加友好,显著减少模型开发时间,降低模型开发门槛。通过MindSpore自身的技术创新及MindSpore与华为昇腾AI处理器的协同优化,实现了运行态的高效,大大提高了计算性能;MindSpore也支持GPU、CPU等其它处理器。
一、训练模型
(1)步骤
-
构建数据集。
-
定义神经网络模型。
-
定义超参、损失函数及优化器。
-
输入数据集进行训练与评估。
(2)开发前提
我们在使用这个框架进行模型训练的时候,我们必须在数据集和网络构建中加载一些代码,这是为了后面测试的时候可以更好地针对性训练,也是对数据训练更完整做了一个前提准备的过程。
import mindspore
from mindspore import nn
from mindspore import ops
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
# Download data from open d