NC212331 ObstacleCourse障碍训练课 (拆点 + 最短路)

本文介绍了一种算法问题,围绕如何计算在一个N×N的农场中,贝茜从点A到点B的最少转弯次数,避开‘x’标记的区域,同时允许她在开始时选择任意方向。通过Dijkstra算法实现路径规划,演示了解决此类路径最短问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述
考虑一个 N x N (1 <= N <= 100)的有1个个方格组成的正方形牧场。有些方格是奶牛们不能踏上的,它们被标记为了’x’。例如下图:

. . B x .
. x x A .
. . . x .
. x . . .
. . x . .

贝茜发现自己恰好在点A处,她想去B处的盐块舔盐。缓慢而且笨拙的动物,比如奶牛,十分讨厌转弯。尽管如此,当然在必要的时候她们还是会转弯的。对于一个给定的牧场,请你计算从A到B最少的转弯次数。开始的时候,贝茜可以使面对任意一个方向。贝茜知道她一定可以到达。

输入描述:
第 1行: 一个整数 N 行

2…N + 1: 行 i+1 有 N 个字符 (‘.’, ‘x’, ‘A’, ‘B’),表示每个点的状态。

输出描述:
行 1: 一个整数,最少的转弯次数。
示例1
输入

3
.xA
…
Bx.

输出

2

思路:
点我
代码:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
struct Node
{
    int x,y,dis,dir;
    friend bool operator <(const Node a,const Node b)
    {
        if(a.dis<b.dis)
        {
            return false;
        }
        return true;
    }
};
const int N=1e3+10;
typedef pair<int,int>PII;
int n;
char g[N][N];
int dist[N][N][2];
bool st[N][N][2];
int dx[]={0,0,1,-1},dy[]={1,-1,0,0};
int dijkstra(PII s)
{
    memset(dist,0x3f,sizeof dist);
    priority_queue<Node,vector<Node>>q;
    q.push({s.first,s.second,0,0});
    q.push({s.first,s.second,0,1});
    dist[s.first][s.second][0]=0;
    dist[s.first][s.second][1]=0;
    int res=0x3f3f3f3f;
    while(!q.empty())
    {
        Node t=q.top();
        q.pop();
        int x=t.x;
        int y=t.y;
        int dis=t.dis;
        int dir=t.dir;
        if(st[x][y][dir])
        {
            continue;
        }
        st[x][y][dir]=true;
        if(g[x][y]=='B')
        {
            res=min(res,dis);
        }
        for(int i=0;i<4;i++)
        {
            int w;
            int a=x+dx[i];
            int b=y+dy[i];
            if(a<1 || a>n || b<1 || b>n)
            {
                continue;
            }
            if(g[a][b]=='x')
            {
                continue;
            }
            int ddir=0;
            if((i<2 && dir==0) || i>1 && dir==1)
            {
                w=0;
                ddir=dir;
            }
            if((i<2 && dir==1)|| (i>1 && dir==0))
            {
                w=1;
                ddir=1-dir;
            }
            if(dist[a][b][ddir]>dist[x][y][dir]+w)
            {
                dist[a][b][ddir]=dist[x][y][dir]+w;
                q.push({a,b,dist[a][b][ddir],ddir});
            }
        }
    }
    if(res==0x3f3f3f3f)
    {
        return -1;
    }
    return res;
}
int main()
{
    cin>>n;
    PII s;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            cin>>g[i][j];
            if(g[i][j]=='A')
            {
                s.first=i;
                s.second=j;
            }
        }
    }
    cout<<dijkstra(s);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值