深度学习|表示学习|卷积神经网络|输出维度公式|15

如是我闻: 在卷积和池化操作中,计算输出维度的公式是关键,它们分别可以帮助我们计算卷积操作池化操作后的输出大小。下面分别总结公式,并结合解释它们的意义:


1. 卷积操作的输出维度公式

当我们对输入图像进行卷积时,输出的宽度和高度可以通过以下公式计算:

输出大小=输入大小−卷积核大小+2⋅填充大小步长+1 \text{输出大小} = \frac{\text{输入大小} - \text{卷积核大小} + 2 \cdot \text{填充大小}}{\text{步长}} + 1 输出大小=步长输入大小卷积核大小+2填充大小+1

符号说明
  • 输入大小 (nnn):输入特征图的宽度或高度(假设为正方形,宽高一致)。
  • 卷积核大小 (kkk):卷积核的宽度或高度(也是正方形)。
  • 填充大小 (ppp):输入图像边界上填充的像素数量。
  • 步长 (sss):卷积核滑动的步幅。
  • 输出大小:卷积后的特征图宽度或高度。
解释公式的意义
  1. 输入大小 - 卷积核大小:表示卷积核需要覆盖整个图像所需要的滑动范围。
  2. 填充大小:增加了边界像素,可以让卷积核覆盖更多区域,输出更大。
  3. 步长:决定滑动的速度,步长越大,输出图像越小。
  4. +1:确保包括卷积核的起始位置。

一个例子

假设输入大小为 32×3232 \times 3232×32,卷积核大小为 3×33 \times 33×3,填充 p=1p = 1p=1,步长 s=1s = 1s=1

套公式:
输出大小=32−3+2⋅11+1=32 \text{输出大小} = \frac{32 - 3 + 2 \cdot 1}{1} + 1 = 32 输出大小=1323+21+1=32

所以,输出特征图的大小为 32×3232 \times 3232×32


2. 池化操作的输出维度公式

池化(Pooling)的输出大小公式类似卷积,但更加简单:

输出大小=输入大小−池化窗口大小步长+1 \text{输出大小} = \frac{\text{输入大小} - \text{池化窗口大小}}{\text{步长}} + 1 输出大小=步长输入大小池化窗口大小+1

符号说明
  • 输入大小 (nnn):输入特征图的宽度或高度。
  • 池化窗口大小 (kkk):池化窗口的宽度或高度。
  • 步长 (sss):池化窗口滑动的步幅。
  • 输出大小:池化后的特征图宽度或高度。
解释公式的意义
  1. 输入大小 - 池化窗口大小:表示池化窗口覆盖图像所需要的滑动范围。
  2. 步长:决定池化窗口滑动的速度。
  3. +1:确保池化窗口的起始位置被计算。

一个例子

假设输入大小为 32×3232 \times 3232×32,池化窗口大小为 2×22 \times 22×2,步长 s=2s = 2s=2

套公式:
输出大小=32−22+1=16 \text{输出大小} = \frac{32 - 2}{2} + 1 = 16 输出大小=2322+1=16

所以,池化后的特征图大小为 16×1616 \times 1616×16


3. 卷积和池化公式对比

操作类型公式
卷积操作输出大小=输入大小−卷积核大小+2⋅填充大小步长+1\text{输出大小} = \frac{\text{输入大小} - \text{卷积核大小} + 2 \cdot \text{填充大小}}{\text{步长}} + 1输出大小=步长输入大小卷积核大小+2填充大小+1
池化操作输出大小=输入大小−池化窗口大小步长+1\text{输出大小} = \frac{\text{输入大小} - \text{池化窗口大小}}{\text{步长}} + 1输出大小=步长输入大小池化窗口大小+1

区别:

  1. 卷积公式中有“填充大小 (ppp)”,而池化一般不考虑填充(默认为 0)。
  2. 卷积核用于提取特征,池化用于降采样。

4. 特征图通道数的变化

  • 卷积操作:输出通道数 = 卷积核的数量(每个卷积核对应一个输出通道)。
  • 池化操作:不会改变通道数,通道数与输入保持一致。

总的来说

  • 卷积操作公式:更复杂,带有填充和步长的影响,用于特征提取。
  • 池化操作公式:更简单,主要用于下采样,不改变通道数。
  • 共同点:两者都通过滑动窗口的方式处理输入,并输出新的特征图。

以上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值