一、计算多项式的导数:np.polyder用法
np.polyder 是 NumPy 库中的一个函数,用于计算多项式的导数。它可以接受多项式的系数表示,并返回其导数的系数。
用法:
numpy.polyder(p, m=1)
参数
p: 一维数组,表示多项式的系数。多项式的系数是按降幂排列的,例如,对于多项式 (2x^2 + 3x + 4),系数数组为 np.array([2, 3, 4])。
m: 可选参数,指定求导的次数,默认值为 1。如果设置为 2,则计算二阶导数。
返回值
返回一个一维数组,表示导数的系数。
示例:
import numpy as np
# 定义一个多项式 2x^2 + 3x + 4
p = np.array([2, 3, 4])
# 计算一阶导数
first_derivative = np.polyder(p)
print("一阶导数的系数:", first_derivative)
# 计算二阶导数
second_derivative = np.polyder(p, m=2)
print("二阶导数的系数:", second_derivative)
输出:
一阶导数的系数: [4 3]
二阶导数的系数: [4]
在这个例子中,原多项式 (2x^2 + 3x + 4) 的一阶导数是 (4x + 3)(其系数为 [4, 3]),二阶导数是常数 4(其系数为 [4],表示 (4))。
注意事项
多项式函数的系数数组中的高次项位于数组的开头,低次项位于数组的末尾。
如果在求二阶导数时,原多项式的最高次方小于 2,则可能会得到系数为 0 的多项式。
二、初始步长权重
primary_list = [0.3, 0.5, 0.7] # 分隔点的示例
weights = [1] * len(primary_list) # 生成 [1, 1, 1]
weights=[1]*len(primary_list) 是 Python 列表的一个创建方法,其目的是生成一个长度为 len(primary_list) 的列表,其中的每个元素都被初始化为 1。在这个例子中,weights 将会是 [1, 1, 1],这表示开始的时候每个分段的权重都是一样的。
具体用途
**初始化权重:**这个 weights 列表通常是用来初始化权重值的。在很多优化算法中,尤其是回归模型中,权重用于控制每个样本对最终模型的影响。在初始设置中,给所有权重赋值为 1 意味着每个样本(或每个盯点)在模型拟合的初期被视为同等重要。
**动态调整:**后续代码可能会更改这些权重,以便根据模型的表现、误差分析或其他标准动态调整不同点的权重。初始化为 1 可以作为一个中立的状态,后续会有逻辑来调整这些权重。