人体姿态估计(Human Pose Estimation, HPE)的方法主要分

人体姿态估计(Human Pose Estimation, HPE)的方法主要分为 两类基于回归的方法基于热图的方法。不同方法适用于不同应用场景,尤其是在实时性精度之间的权衡很重要。


1. 基于回归的方法

思想:直接回归关键点的 (x, y) 坐标,而不是生成热图。
优点:计算简单,推理速度快,适用于嵌入式设备和实时应用。
缺点:定位精度可能较低,难以处理遮挡、复杂背景等情况。

代表方法:

  • YOLO-Pose(YOLOv5-Pose / YOLOv11-Pose)

    • YOLO系列扩展到人体关键点检测,输出人体边界框 + 关键点坐标。
    • 适用于实时应用(如车载摄像头检测驾驶员行为)。
    • YOLOv5-Pose 在速度和精度之间取得平衡,YOLOv11-Pose 可能有更高的检测精度。
  • DeepPose(CVPR 2014)

    • 采用深度神经网络
### 3D Human Pose Estimation Techniques and Applications In the realm of computer vision, **3D human pose estimation (HPE)** aims to identify and classify not only the presence but also the three-dimensional positions of key joints within the human body[^1]. This technology has evolved significantly with advancements in deep learning methods. #### Monocular Image-Based Methods Monocular image-based approaches leverage single-camera setups for estimating 3D poses from images or video frames. These models often employ convolutional neural networks (CNNs) that are trained on large datasets containing annotated keypoints. The network learns to predict depth information alongside spatial coordinates by understanding context clues such as limb orientation relative to camera angles[^2]. For instance, a popular method involves using hourglass architectures which iteratively refine heatmaps representing probable locations of each joint until convergence upon accurate predictions. Another approach utilizes multi-view geometry principles combined with CNN outputs to reconstruct full-body skeletons even when parts of bodies may be occluded during capture sessions. #### Multi-modal Fusion Approaches Beyond traditional visual data sources like RGB cameras, researchers have explored integrating other sensing modalities into HPE systems. One notable example includes leveraging WiFi signals capable of penetrating obstacles including walls; this allows for non-line-of-sight tracking without requiring line-of-sight visibility between subjects and sensors. By training deep neural networks on synchronized wireless and visual inputs, these hybrid solutions can achieve comparable accuracy levels while extending operational capabilities beyond conventional limitations imposed by purely optical means alone. #### Real-world Applications The practical implications span across various domains: - **Healthcare**: Monitoring patient movements post-surgery recovery. - **Sports Science**: Analyzing athlete performance metrics accurately. - **Virtual Reality/Augmented Reality**: Enhancing user interaction experiences through realistic avatar animations driven directly off real-time motion captures. ```python import numpy as np from sklearn.model_selection import train_test_split def preprocess_data(images, labels): """Preprocesses input dataset.""" X_train, X_val, y_train, y_val = train_test_split( images, labels, test_size=0.2, random_state=42) return X_train, X_val, y_train, y_val class PoseEstimator: def __init__(self): self.model = None def fit(self, X_train, y_train): # Train model here... pass def evaluate(self, X_val, y_val): # Evaluate model performance... pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值