python数据分析与应用 第七章实训信用卡处理

本文介绍了使用Python进行信用卡数据异常值处理,包括删除异常记录和构建风险评价关键特征。通过K-Means聚类模型,对信用卡客户进行了风险划分,得出不同类别的用户数目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实训1 处理信用卡数据异常值

1.读取信用卡数据

import numpy as np
import pandas as pd
credit_card = pd.read_csv('D:/学习/Python数据分析与应用PPT、教案、实训数据、习题答案/Python数据分析与应用/第7章/训数据/credit_card.csv',
                          sep=',',encoding='gbk')
print(credit_card)

测试结果:

       信用卡顾客编号  申请书来源  瑕疵户  逾期  呆账  借款余额  退票  拒往记录  强制停卡记录  张数  ...  \

0 CDMS0000001 5 2 2 2 2 2 2 2 1 …
1 CDMS0000002 3 2 2 2 2 2 2 2 2 …
2 CDMS0000003 2 2 2 2 2 2 2 2 2 …
3 CDMS0000004 3 2 2 2 2 2 2 2 2 …
4 CDMS0000005 6 2 2 2 2 2 2 2 2 …
… … … … … … … … … … … …
65530 CDMS0065531 4 2 2 2 2 2 2 2 2 …
65531 CDMS0065532 3 2 2 2 2 2 2 2 2 …
65532 CDMS0065533 3 2 2 2 2 2 2 2 2 …
65533 CDMS0065534 6 2 1 1 1 1 1 1 3 …
65534 CDMS0065535 5 2 2 2 2 2 2 2 1 …

   个人月收入  个人月开销  住家  家庭月收入  月刷卡额  宗教信仰  人口数  家庭经济  血型  星座  

0 1 1 1 1 1 2 4 4 4 10
1 1 2 1 1 2 1 4 4 1 5
2 1 1 1 1 6 6 6 5 1 7
3 1 1 1 1 4 2 4 3 2 6
4 1 3 1 1 5 1 4 3 4 6
… … … … … … … … … … …
65530 4 2 5 4 5 7 6 2 4 6
65531 4 2 5 4 6 3 6 1 4 4
65532 4 2 5 4 3 1 4 1 3 1
65533 4 4 5 4 2 6 1 3 1 12
65534 1 1 1 1 1 2 4 4 4 10

[65535 rows x 28 columns]

2.丢弃逾期,呆账,强制停卡,退票记录,拒往记录为 1 ,瑕疵户为 2 的记录

import os
index1 = credit_card['逾期'] == 1
index2 = credit_card['呆账'] == 1
index3 = credit_card['强制停卡记录'] == 1
index4 = credit_card['退票'] == 1
index5 = credit_card['拒往记录'] == 1
index6 = credit_card['瑕疵户'] == 2
indexs = index1 & index2  & index3 & index4 & index5 & index6
credit_card1 = credit_card.loc[indexs==False,:]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值