线性代数学习笔记-part2 矩阵及其运算

矩阵及其运算

线性方程组和矩阵

设有 n 个未知数 m 个方程的线性方程组
{a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,    ⋮am1x1+am2x2+⋯+amnxn=bm. \left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\ &\;\;\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m. \end{aligned} \right. a11x1+a12x2++a1nxna21x1+a22x2++a2nxnam1x1+am2x2++amnxn=b1,=b2,=bm.
其中 aija_{ij}aij是第 i个方程的第j个未知数的系数, bib_ibi 是第i个方程的常数项,i=1,2,⋯ ,mi= 1, 2, \cdots, mi=1,2,,mj=1,2,⋯ ,nj= 1, 2, \cdots, nj=12,n,当常数项 b1,b2,⋯ ,bmb_1, b_2, \cdots, b_mb1,b2,,bm 不全为零时,线性方程组叫做n元非齐次线性方程组, 当b1,b2,⋯ ,bmb_1, b_2, \cdots, b_mb1,b2,,bm全为零时,上式成为
{a11x1+a12x2+⋯+a1nxn=0,a21x1+a22x2+⋯+a2nxn=0,    ⋮am1x1+am2x2+⋯+amnxn=0. \left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= 0, \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= 0, \\ &\;\;\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= 0. \end{aligned} \right. a11x1+a12x2++a1nxna21x1+a22x2++a2nxnam1x1+am2x2++amnxn=0,=0,=0.
叫做n元齐次线性方程组.

n元线性方程组往往简称为线性方程组或方程组.

对于n元齐次线性方程组 , x1=x2=⋯=xn=0x_1 = x_2 =\cdots=x_n=0x1=x2==xn=0 一定是它的解, 该解称为零解. 如果一组不全为零的数是齐次方程组的解, 则它叫做齐次线性方程组的非零解. 齐次线性方程组一定有零解, 但不一定有非零解.

定义1:由m×nm\times nm×n个数 aij(i=1,2,⋯ ,m;j=1,2,⋯ ,n)a_{ij} (i=1,2,\cdots,m;j=1,2,\cdots,n)aij(i=1,2,,m;j=1,2,,n)排成的m行n列的数表
a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{matrix} a11a21am1a12a22am2a1na2namn
称为m行n列矩阵,简称m×nm\times nm×n矩阵。通常用一个括弧包含该数表, 并用大写黑体字母表示矩阵, 记作
A=(a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn) A=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} A=a11a21am1a12a22am2a1na2namn
m×nm\times nm×n个数称为矩阵A的元素, 简称为元, 数aija_{ij}aij位于矩阵A 的第i行第j列, 称为矩阵AAA的(i, j)元. 以数 aija_{ij}aij为(i, j)元的矩阵可简记作(aij)(a_{ij})(aij)(aij)m×n(a_{ij})_{m\times n}(aij)m×n. m×nm\times nm×n矩阵AAA也记作 Am×nA_{m\times n}Am×n. 元素是实数的矩阵称为实矩阵, 元素是复数的矩阵称为复矩阵.

行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵. n阶矩阵AAA也记作AnA_nAn.

只有一行的矩阵
A=(a1a2⋯an) \begin{align} A=\begin{pmatrix} a_{1} & a_{2} & \cdots & a_{n} \end{pmatrix} \end{align} A=(a1a2an)
称为行矩阵,又称行向量.为避免元素间的混淆, 行矩阵也记作
A=(a1,a2,⋯ ,an) \begin{align} A=\begin{pmatrix} a_{1}, & a_{2}, & \cdots, & a_{n} \end{pmatrix} \end{align} A=(a1,a2,,an)
只有一列的矩阵
B=(b1b2⋮bm) \begin{align} B=\begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{pmatrix} \end{align} B=b1b2bm

称为列矩阵, 又称列向量.

两个矩阵的行数相等、 列数也相等时, 就称它们是同型矩阵. 如果A=(aij)A =(a_{ij})A=(aij)B=(bij)B=(b_{ij})B=(bij)是同型矩阵, 并且它们的对应元素相等, 即
aij=bij(i=1,2,⋯ ,m;j=1,2,⋯ ,n) a_{ij}=b_{ij} \quad (i=1,2,\cdots,m;j=1,2,\cdots,n) aij=bij(i=1,2,,m;j=1,2,,n)
那么就称矩阵 AAA 与矩阵 BBB 相等, 记作A=BA = BA=B.

元素都是零的矩阵称为零矩阵, 记作 OOO.

对于非齐次线性方程组,
{a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,    ⋮am1x1+am2x2+⋯+amnxn=bm. \left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\ &\;\;\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m. \end{aligned} \right. a11x1+a12x2++a1nxna21x1+a22x2++a2nxnam1x1+am2x2++amnxn=b1,=b2,=bm.

A=(aij),x=(x1x2⋮xn),b=(b1b2⋮bm),B=(a11a12⋯a1nb1a21a22⋯a2nb2⋮⋮⋱⋮⋮am1am2⋯amnbm) \begin{align} A=(a_{ij}), x=\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix}, b=\begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{pmatrix}, B=\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix} \end{align} A=(aij),x=x1x2xn,b=b1b2bm,B=a11a21am1a12a22am2a1na2namnb1b2bm
其中AAA称为系数矩阵xxx称为未知数矩阵bbb称为常数项矩阵BBB称为增广矩阵.

矩阵运算

加法

定义 2 设有两个m×nm\times nm×nA=(aij)A =(a_{ij})A=(aij)B=(bij)B =(b_{ij})B=(bij),那么矩阵AAABBB的和记作A+BA +BA+B,规定为
A+B=(a11+b11a12+b12⋯a1n+b1na21+b21a22+b22⋯a2n+b2n⋮⋮⋱⋮am1+bm1am2+bm2⋯amn+bmn) A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix} A+B=a11+b11a21+b21am1+bm1a12+b12a22+b22am2+bm2a1n+b1na2n+b2namn+bmn
应该注意, 只有当两个矩阵是同型矩阵时, 这两个矩阵才能进行加法运算.

矩阵加法满足下列运算规律(设AAABBBCCC都是m×nm\times nm×n矩阵):

  • A+B=B+AA+B=B+AA+B=B+A
  • (A+B)+C=A+(B+C)(A +B) + C = A +(B +C)(A+B)+C=A+(B+C) .

数与矩阵相乘

定义 3λ\lambdaλ与矩阵AAA的乘积记作λA\lambda AλAAλA\lambdaAλ,规定为
λA=Aλ=(λa11⋯λa1n⋮⋱⋮λam1⋯λamn) \lambda A = A\lambda= \begin{pmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{pmatrix} λA=Aλ=λa11λam1λa1nλamn

数乘矩阵满足下列运算规律(设AAABBBm×nm\times nm×n矩阵,λ\lambdaλμ\muμ 为数) :

  • (λμ)A=λ(μA)(\lambda\mu) A=\lambda(\mu A)(λμ)A=λ(μA);
  • (λ+μ)A=λA+μA(\lambda+\mu)A=\lambda A+\mu A(λ+μ)A=λA+μA;
  • λ(A+B)=λA+λB\lambda(A+B)=\lambda A+\lambda Bλ(A+B)=λA+λB

矩阵加法与数乘矩阵统称为矩阵的线性运算.

矩阵与矩阵相乘

定义4A=(aij)A=(a_{ij})A=(aij) 是一个m×sm\times sm×s矩阵, B=(bij)B=(b_{ij})B=(bij)是一个s×ns\times ns×n矩阵, 那么规定矩阵AAA与矩阵BBB的乘积是一个m×nm\times nm×n矩阵C=(cij)C =(c_{ij})C=(cij),其中
cij=ai1b1j+ai2b2j+⋯+aisbsj=∑k=1saikbkj(i=1,2,⋯ ,m;j=1,2,⋯ ,n) c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{is}b_{sj}=\sum_{k=1}^sa_{ik}b_{kj}\quad(i=1,2,\cdots,m;j=1,2,\cdots,n) cij=ai1b1j+ai2b2j++aisbsj=k=1saikbkj(i=1,2,,m;j=1,2,,n)
并把此乘积记作
C=AB C=AB C=AB
必须注意: 只有当第一个矩阵(左矩阵) 的列数等于第二个矩阵(右矩阵) 的行数时, 两个矩阵才能相乘.

ABABABAAA左乘BBBBBBAAA左乘)的乘积, BABABAAAA右乘BBB的乘积,ABABAB有意义时,BABABA可能没有意义.又若AAAm×nm\times nm×n矩阵,BBBn×mn\times mn×m矩阵, 则ABABABBABABA都有意义, 但ABABABmmm阶方阵,BABABAnnn阶方阵,当m≠nm\neq nm=n时,AB≠BAAB\neq BAAB=BA. 即使m=nm=nm=n,即AAABBB是同阶方阵. 总之,矩阵的乘法不满足交换律, 即在一般情形下,AB≠BAAB\neq BAAB=BA

对于两个 n 阶方阵AAABBB, 若AB=BAA B = BAAB=BA, 则称方阵AAABBB是可交换的.

若有两个矩阵AAABBB满足AB=OA B = OAB=O, 不能得出A=OA = OA=OB=OB = OB=O的结论; 若A≠OA \neq OA=OA(X−Y)=OA(X - Y) = OA(XY)=O, 也不能得出X=YX = YX=Y的结论.

矩阵的乘法虽不满足交换律, 但仍满足下列结合律和分配律(假设运算都是可行的) :

  • (AB)C=A(BC)(A B) C = A(B C)(AB)C=A(BC) ;
  • λ(AB)=(λA)B=A(λB)\lambda (AB) =(\lambda A) B = A(\lambda B)λ(AB)=(λA)B=A(λB)(其中λ\lambdaλ为数);
  • A(B+C)=AB+ACA(B + C)= A B +A CA(B+C)=AB+AC(B+C)A=BA+CA(B + C) A = BA + CA(B+C)A=BA+CA.

单位矩阵III在矩阵乘法中的作用类似于数 1.

矩阵
λI=(λ⋱λ) \lambda I = \begin{pmatrix} \lambda & & \\ & \ddots & \\ & & \lambda \end{pmatrix} λI=λλ
称为纯量阵.纯量阵与任何同阶方阵都是可交换的.

有了矩阵的乘法, 就可以定义矩阵的幂.设AAA是n阶方阵,定义
A1=A,A2=A1A1,⋯ ,Ak+1=AkA1 A^1=A, A^2=A^1A^1,\cdots,A^{k+1}=A^{k}A^1 A1=AA2=A1A1,,Ak+1=AkA1
其中 k 为正整数, 这就是说,AkA^kAk就是k个AAA连乘. 显然只有方阵的幂才有意义.

因矩阵乘法一般不满足交换律, 所以对于两个n阶矩阵AAABBB, 一般说来(AB)k≠AkBk(AB)^k\neq A^k B^k(AB)k=AkBk,只有当AAABBB可交换时,才有(AB)k=AkBk(AB)^k = A^k B^k(AB)k=AkBk. 类似可知, 例如(A+B)2=A2+2AB+B2(A +B)^2 = A^2 +2A B + B^2(A+B)2=A2+2AB+B2(A−B)(A+B)=A2−B2(A- B)(A + B) = A^2 - B^2(AB)(A+B)=A2B2等公式, 也只有当AAABBB可交换时才成立.

矩阵转置

定义 5 把矩阵AAA的行换成同序数的列得到一个新矩阵,叫做AAA的转置矩阵, 记作ATA^\text{T}AT.

矩阵的转置也是一种运算, 满足下述运算规律(假设运算都是可行的) :

  • (AT)T=A(A^\text{T})^\text{T} = A(AT)T=A
  • (A+B)T=AT+BT(A + B) ^\text{T} = A^\text{T} +B^\text{T}(A+B)T=AT+BT
  • (λA)T=λAT(\lambda A)^\text{T} =\lambda A^\text{T}(λA)T=λAT
  • (AB)T=BTAT(AB) ^\text{T} = B^\text{T}A^\text{T}(AB)T=BTAT.

AAA为n阶方阵, 如果满足AT=AA^\text{T}=AAT=A,那么AAA称为对称矩阵,简称对称阵. 对称矩阵的特点是: 它的元素以对角线为对称轴对应相等

方阵的行列式

定义 6 由 n 阶方阵AAA的元素所构成的行列式(各元素的位置不变), 称为方阵AAA的行列式, 记作detAAA∣A∣|A|A .

方阵与行列式是两个不同的概念, n 阶方阵是 n2n^2n2个数按一定方式排成的数表, 而n阶行列式则是这些数(也就是数表AAA)按一定的运算法则所确定的一个数.

AAA确定∣A∣|A|A的这个运算满足下述运算规律(设AAABBB为n 阶方阵,λ\lambdaλ为数):

  • ∣AT∣=∣A∣|AT| =|A|AT=A(行列式性质1);
  • ∣λA∣=λn∣A∣|\lambda A| =\lambda^n |A|λA=λnA
  • ∣AB∣=∣A∣∣B∣|AB| =|A||B|AB=A∣∣B.

对于n阶矩阵AAABBB, 一般来说AB≠BAA B\neq BAAB=BA, 但总有∣AB∣=∣BA∣|AB| =|BA|AB=BA .

逆矩阵

定义 7 对于n阶矩阵AAA,如果有一个n阶矩阵BBB, 使
AB=BA=I, A B = B A = I, AB=BA=I
则说矩阵AAA是可逆的, 并把矩阵BBB称为AAA的逆矩阵,简称逆阵.

AAA的逆矩阵记作A−1A^{-1}A1. 即若AB=BA=IAB = BA = IAB=BA=I, 则B=A−1B = A^{-1}B=A1.

定理1 若矩阵AAA可逆,则∣A∣≠0|A|\neq 0A=0.

定理2∣A∣≠0|A|\neq 0A=0, 则矩阵AAA可逆,且
A−1=1∣A∣A∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A
其中A∗A^*A为矩阵AAA的伴随矩阵.

∣A∣=0|A|=0A=0时, AAA称为奇异矩阵, 否则称非奇异矩阵. 由上面两定理可知: AAA是可逆矩阵的充分必要条件是∣A∣≠0|A|\neq 0A=0, 即可逆矩阵就是非奇异矩阵

推论AB=IA B = IAB=I (或BA=IBA = IBA=I) , 则B=A−1B = A^{-1}B=A1.

逆矩阵满足下述运算规律:

  • AAA可逆, 则A−1A^{-1}A1亦可逆,且(A−1)−1=A(A^{-1})^{-1} = A(A1)1=A
  • AAA可逆, 数λ≠0\lambda \neq 0λ=0, 则λA\lambda AλA可逆, 且(λA)−1=1λA−1(\lambda A)^{-1} =\frac{1}{\lambda} A^{-1}(λA)1=λ1A1
  • AAABBB为同阶矩阵且均可逆, 则ABABAB亦可逆, 且(AB)−1=B−1A−1(AB)^{-1} =B^{-1}A^{-1}(AB)1=B1A1

克拉默法则

克拉默法则 如果线性方程组
{a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,    ⋮an1x1+an2x2+⋯+annxn=bn. \left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\ &\;\;\vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n &= b_n. \end{aligned} \right. a11x1+a12x2++a1nxna21x1+a22x2++a2nxnan1x1+an2x2++annxn=b1,=b2,=bn.
的系数矩阵AAA的行列式不等于零, 即
∣A∣=∣a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann∣≠0 |A|=\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}\neq 0 A=a11a21an1a12a22an2a1na2nann=0
那么, 方程组有惟一解
x1=∣A1∣∣A∣,x2=∣A2∣∣A∣,⋯ ,xn=∣An∣∣A∣, x_1=\frac{|A_1|}{|A|},x_2=\frac{|A_2|}{|A|},\cdots,x_n=\frac{|A_n|}{|A|}, x1=AA1,x2=AA2,,xn=AAn,
其中Aj(j=1,2,⋯ ,n)A_j(j=1,2,\cdots,n)Aj(j=1,2,,n)是把系数矩阵AAA中第j列的元素用方程组右端的常数项代替后所得到的n阶矩阵, 即
Aj=(a11⋯a1,j−1b1a1,j+1⋯a1na21⋯a2,j−1b2a2,j+1⋯a2n⋮⋱⋮⋮⋮⋱⋮an1⋯an,j−1bnan,j+1⋯ann) A_j = \begin{pmatrix} a_{11} & \cdots & a_{1,j-1} & b_1 & a_{1,j+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2,j-1} & b_2 & a_{2,j+1} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & b_n & a_{n,j+1} & \cdots & a_{nn} \\ \end{pmatrix} Aj=a11a21an1a1,j1a2,j1an,j1b1b2bna1,j+1a2,j+1an,j+1a1na2nann

矩阵分块法

对于行数和列数较高的矩阵AAA, 运算时常采用分块法, 使大矩阵的运算化成小矩阵的运算.将矩阵AAA用若干条纵线和横线分成许多个小矩阵, 每一个小矩阵称为AAA的子块, 以子块为元素的形式上的矩阵称为分块矩阵.

分块矩阵的运算规则与普通矩阵的运算规则相类似

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值