矩阵及其运算
线性方程组和矩阵
设有 n 个未知数 m 个方程的线性方程组
{a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2, ⋮am1x1+am2x2+⋯+amnxn=bm.
\left\{
\begin{aligned}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\
&\;\;\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m.
\end{aligned}
\right.
⎩⎨⎧a11x1+a12x2+⋯+a1nxna21x1+a22x2+⋯+a2nxnam1x1+am2x2+⋯+amnxn=b1,=b2,⋮=bm.
其中 aija_{ij}aij是第 i个方程的第j个未知数的系数, bib_ibi 是第i个方程的常数项,i=1,2,⋯ ,mi= 1, 2, \cdots, mi=1,2,⋯,m; j=1,2,⋯ ,nj= 1, 2, \cdots, nj=1,2,⋯,n,当常数项 b1,b2,⋯ ,bmb_1, b_2, \cdots, b_mb1,b2,⋯,bm 不全为零时,线性方程组叫做n元非齐次线性方程组, 当b1,b2,⋯ ,bmb_1, b_2, \cdots, b_mb1,b2,⋯,bm全为零时,上式成为
{a11x1+a12x2+⋯+a1nxn=0,a21x1+a22x2+⋯+a2nxn=0, ⋮am1x1+am2x2+⋯+amnxn=0.
\left\{
\begin{aligned}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= 0, \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= 0, \\
&\;\;\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= 0.
\end{aligned}
\right.
⎩⎨⎧a11x1+a12x2+⋯+a1nxna21x1+a22x2+⋯+a2nxnam1x1+am2x2+⋯+amnxn=0,=0,⋮=0.
叫做n元齐次线性方程组.
n元线性方程组往往简称为线性方程组或方程组.
对于n元齐次线性方程组 , x1=x2=⋯=xn=0x_1 = x_2 =\cdots=x_n=0x1=x2=⋯=xn=0 一定是它的解, 该解称为零解. 如果一组不全为零的数是齐次方程组的解, 则它叫做齐次线性方程组的非零解. 齐次线性方程组一定有零解, 但不一定有非零解.
定义1:由m×nm\times nm×n个数 aij(i=1,2,⋯ ,m;j=1,2,⋯ ,n)a_{ij} (i=1,2,\cdots,m;j=1,2,\cdots,n)aij(i=1,2,⋯,m;j=1,2,⋯,n)排成的m行n列的数表
a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
称为m行n列矩阵,简称m×nm\times nm×n矩阵。通常用一个括弧包含该数表, 并用大写黑体字母表示矩阵, 记作
A=(a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn)
A=\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
A=a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
这m×nm\times nm×n个数称为矩阵A的元素, 简称为元, 数aija_{ij}aij位于矩阵A 的第i行第j列, 称为矩阵AAA的(i, j)元. 以数 aija_{ij}aij为(i, j)元的矩阵可简记作(aij)(a_{ij})(aij) 或(aij)m×n(a_{ij})_{m\times n}(aij)m×n. m×nm\times nm×n矩阵AAA也记作 Am×nA_{m\times n}Am×n. 元素是实数的矩阵称为实矩阵, 元素是复数的矩阵称为复矩阵.
行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵. n阶矩阵AAA也记作AnA_nAn.
只有一行的矩阵
A=(a1a2⋯an)
\begin{align}
A=\begin{pmatrix}
a_{1} & a_{2} & \cdots & a_{n}
\end{pmatrix}
\end{align}
A=(a1a2⋯an)
称为行矩阵,又称行向量.为避免元素间的混淆, 行矩阵也记作
A=(a1,a2,⋯ ,an)
\begin{align}
A=\begin{pmatrix}
a_{1}, & a_{2}, & \cdots, & a_{n}
\end{pmatrix}
\end{align}
A=(a1,a2,⋯,an)
只有一列的矩阵
B=(b1b2⋮bm)
\begin{align}
B=\begin{pmatrix}
b_{1} \\ b_{2} \\ \vdots \\ b_{m}
\end{pmatrix}
\end{align}
B=b1b2⋮bm
称为列矩阵, 又称列向量.
两个矩阵的行数相等、 列数也相等时, 就称它们是同型矩阵. 如果A=(aij)A =(a_{ij})A=(aij)与B=(bij)B=(b_{ij})B=(bij)是同型矩阵, 并且它们的对应元素相等, 即
aij=bij(i=1,2,⋯ ,m;j=1,2,⋯ ,n)
a_{ij}=b_{ij} \quad (i=1,2,\cdots,m;j=1,2,\cdots,n)
aij=bij(i=1,2,⋯,m;j=1,2,⋯,n)
那么就称矩阵 AAA 与矩阵 BBB 相等, 记作A=BA = BA=B.
元素都是零的矩阵称为零矩阵, 记作 OOO.
对于非齐次线性方程组,
{a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2, ⋮am1x1+am2x2+⋯+amnxn=bm.
\left\{
\begin{aligned}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\
&\;\;\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m.
\end{aligned}
\right.
⎩⎨⎧a11x1+a12x2+⋯+a1nxna21x1+a22x2+⋯+a2nxnam1x1+am2x2+⋯+amnxn=b1,=b2,⋮=bm.
A=(aij),x=(x1x2⋮xn),b=(b1b2⋮bm),B=(a11a12⋯a1nb1a21a22⋯a2nb2⋮⋮⋱⋮⋮am1am2⋯amnbm)
\begin{align}
A=(a_{ij}),
x=\begin{pmatrix}
x_{1} \\ x_{2} \\ \vdots \\ x_{n}
\end{pmatrix},
b=\begin{pmatrix}
b_{1} \\ b_{2} \\ \vdots \\ b_{m}
\end{pmatrix},
B=\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\
a_{21} & a_{22} & \cdots & a_{2n} & b_2\\
\vdots & \vdots & \ddots & \vdots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn} & b_m
\end{pmatrix}
\end{align}
A=(aij),x=x1x2⋮xn,b=b1b2⋮bm,B=a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amnb1b2⋮bm
其中AAA称为系数矩阵, xxx称为未知数矩阵, bbb称为常数项矩阵,BBB称为增广矩阵.
矩阵运算
加法
定义 2 设有两个m×nm\times nm×n阵 A=(aij)A =(a_{ij})A=(aij) 和 B=(bij)B =(b_{ij})B=(bij),那么矩阵AAA与BBB的和记作A+BA +BA+B,规定为
A+B=(a11+b11a12+b12⋯a1n+b1na21+b21a22+b22⋯a2n+b2n⋮⋮⋱⋮am1+bm1am2+bm2⋯amn+bmn)
A + B = \begin{pmatrix}
a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\
a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn}
\end{pmatrix}
A+B=a11+b11a21+b21⋮am1+bm1a12+b12a22+b22⋮am2+bm2⋯⋯⋱⋯a1n+b1na2n+b2n⋮amn+bmn
应该注意, 只有当两个矩阵是同型矩阵时, 这两个矩阵才能进行加法运算.
矩阵加法满足下列运算规律(设AAA,BBB,CCC都是m×nm\times nm×n矩阵):
- A+B=B+AA+B=B+AA+B=B+A;
- (A+B)+C=A+(B+C)(A +B) + C = A +(B +C)(A+B)+C=A+(B+C) .
数与矩阵相乘
定义 3 数λ\lambdaλ与矩阵AAA的乘积记作λA\lambda AλA或AλA\lambdaAλ,规定为
λA=Aλ=(λa11⋯λa1n⋮⋱⋮λam1⋯λamn)
\lambda A = A\lambda= \begin{pmatrix}
\lambda a_{11} & \cdots & \lambda a_{1n} \\
\vdots & \ddots & \vdots \\
\lambda a_{m1} & \cdots & \lambda a_{mn}
\end{pmatrix}
λA=Aλ=λa11⋮λam1⋯⋱⋯λa1n⋮λamn
数乘矩阵满足下列运算规律(设AAA、BBB为m×nm\times nm×n矩阵,λ\lambdaλ、μ\muμ 为数) :
- (λμ)A=λ(μA)(\lambda\mu) A=\lambda(\mu A)(λμ)A=λ(μA);
- (λ+μ)A=λA+μA(\lambda+\mu)A=\lambda A+\mu A(λ+μ)A=λA+μA;
- λ(A+B)=λA+λB\lambda(A+B)=\lambda A+\lambda Bλ(A+B)=λA+λB
矩阵加法与数乘矩阵统称为矩阵的线性运算.
矩阵与矩阵相乘
定义4 设A=(aij)A=(a_{ij})A=(aij) 是一个m×sm\times sm×s矩阵, B=(bij)B=(b_{ij})B=(bij)是一个s×ns\times ns×n矩阵, 那么规定矩阵AAA与矩阵BBB的乘积是一个m×nm\times nm×n矩阵C=(cij)C =(c_{ij})C=(cij),其中
cij=ai1b1j+ai2b2j+⋯+aisbsj=∑k=1saikbkj(i=1,2,⋯ ,m;j=1,2,⋯ ,n)
c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{is}b_{sj}=\sum_{k=1}^sa_{ik}b_{kj}\quad(i=1,2,\cdots,m;j=1,2,\cdots,n)
cij=ai1b1j+ai2b2j+⋯+aisbsj=k=1∑saikbkj(i=1,2,⋯,m;j=1,2,⋯,n)
并把此乘积记作
C=AB
C=AB
C=AB
必须注意: 只有当第一个矩阵(左矩阵) 的列数等于第二个矩阵(右矩阵) 的行数时, 两个矩阵才能相乘.
ABABAB是AAA左乘BBB(BBB被AAA左乘)的乘积, BABABA是AAA右乘BBB的乘积,ABABAB有意义时,BABABA可能没有意义.又若AAA是 m×nm\times nm×n矩阵,BBB是n×mn\times mn×m矩阵, 则ABABAB与BABABA都有意义, 但ABABAB是mmm阶方阵,BABABA是nnn阶方阵,当m≠nm\neq nm=n时,AB≠BAAB\neq BAAB=BA. 即使m=nm=nm=n,即AAA、 BBB是同阶方阵. 总之,矩阵的乘法不满足交换律, 即在一般情形下,AB≠BAAB\neq BAAB=BA
对于两个 n 阶方阵AAA、BBB, 若AB=BAA B = BAAB=BA, 则称方阵AAA与BBB是可交换的.
若有两个矩阵AAA、BBB满足AB=OA B = OAB=O, 不能得出A=OA = OA=O或B=OB = OB=O的结论; 若A≠OA \neq OA=O而A(X−Y)=OA(X - Y) = OA(X−Y)=O, 也不能得出X=YX = YX=Y的结论.
矩阵的乘法虽不满足交换律, 但仍满足下列结合律和分配律(假设运算都是可行的) :
- (AB)C=A(BC)(A B) C = A(B C)(AB)C=A(BC) ;
- λ(AB)=(λA)B=A(λB)\lambda (AB) =(\lambda A) B = A(\lambda B)λ(AB)=(λA)B=A(λB)(其中λ\lambdaλ为数);
- A(B+C)=AB+ACA(B + C)= A B +A CA(B+C)=AB+AC, (B+C)A=BA+CA(B + C) A = BA + CA(B+C)A=BA+CA.
单位矩阵III在矩阵乘法中的作用类似于数 1.
矩阵
λI=(λ⋱λ)
\lambda I = \begin{pmatrix}
\lambda & & \\
& \ddots & \\
& & \lambda
\end{pmatrix}
λI=λ⋱λ
称为纯量阵.纯量阵与任何同阶方阵都是可交换的.
有了矩阵的乘法, 就可以定义矩阵的幂.设AAA是n阶方阵,定义
A1=A,A2=A1A1,⋯ ,Ak+1=AkA1
A^1=A, A^2=A^1A^1,\cdots,A^{k+1}=A^{k}A^1
A1=A,A2=A1A1,⋯,Ak+1=AkA1
其中 k 为正整数, 这就是说,AkA^kAk就是k个AAA连乘. 显然只有方阵的幂才有意义.
因矩阵乘法一般不满足交换律, 所以对于两个n阶矩阵AAA与BBB, 一般说来(AB)k≠AkBk(AB)^k\neq A^k B^k(AB)k=AkBk,只有当AAA与BBB可交换时,才有(AB)k=AkBk(AB)^k = A^k B^k(AB)k=AkBk. 类似可知, 例如(A+B)2=A2+2AB+B2(A +B)^2 = A^2 +2A B + B^2(A+B)2=A2+2AB+B2、 (A−B)(A+B)=A2−B2(A- B)(A + B) = A^2 - B^2(A−B)(A+B)=A2−B2等公式, 也只有当AAA与BBB可交换时才成立.
矩阵转置
定义 5 把矩阵AAA的行换成同序数的列得到一个新矩阵,叫做AAA的转置矩阵, 记作ATA^\text{T}AT.
矩阵的转置也是一种运算, 满足下述运算规律(假设运算都是可行的) :
- (AT)T=A(A^\text{T})^\text{T} = A(AT)T=A;
- (A+B)T=AT+BT(A + B) ^\text{T} = A^\text{T} +B^\text{T}(A+B)T=AT+BT;
- (λA)T=λAT(\lambda A)^\text{T} =\lambda A^\text{T}(λA)T=λAT;
- (AB)T=BTAT(AB) ^\text{T} = B^\text{T}A^\text{T}(AB)T=BTAT.
设AAA为n阶方阵, 如果满足AT=AA^\text{T}=AAT=A,那么AAA称为对称矩阵,简称对称阵. 对称矩阵的特点是: 它的元素以对角线为对称轴对应相等
方阵的行列式
定义 6 由 n 阶方阵AAA的元素所构成的行列式(各元素的位置不变), 称为方阵AAA的行列式, 记作detAAA或∣A∣|A|∣A∣ .
方阵与行列式是两个不同的概念, n 阶方阵是 n2n^2n2个数按一定方式排成的数表, 而n阶行列式则是这些数(也就是数表AAA)按一定的运算法则所确定的一个数.
由AAA确定∣A∣|A|∣A∣的这个运算满足下述运算规律(设AAA、BBB为n 阶方阵,λ\lambdaλ为数):
- ∣AT∣=∣A∣|AT| =|A|∣AT∣=∣A∣(行列式性质1);
- ∣λA∣=λn∣A∣|\lambda A| =\lambda^n |A|∣λA∣=λn∣A∣;
- ∣AB∣=∣A∣∣B∣|AB| =|A||B|∣AB∣=∣A∣∣B∣.
对于n阶矩阵AAA、BBB, 一般来说AB≠BAA B\neq BAAB=BA, 但总有∣AB∣=∣BA∣|AB| =|BA|∣AB∣=∣BA∣ .
逆矩阵
定义 7 对于n阶矩阵AAA,如果有一个n阶矩阵BBB, 使
AB=BA=I,
A B = B A = I,
AB=BA=I,
则说矩阵AAA是可逆的, 并把矩阵BBB称为AAA的逆矩阵,简称逆阵.
AAA的逆矩阵记作A−1A^{-1}A−1. 即若AB=BA=IAB = BA = IAB=BA=I, 则B=A−1B = A^{-1}B=A−1.
定理1 若矩阵AAA可逆,则∣A∣≠0|A|\neq 0∣A∣=0.
定理2 若∣A∣≠0|A|\neq 0∣A∣=0, 则矩阵AAA可逆,且
A−1=1∣A∣A∗
A^{-1}=\frac{1}{|A|}A^*
A−1=∣A∣1A∗
其中A∗A^*A∗为矩阵AAA的伴随矩阵.
当∣A∣=0|A|=0∣A∣=0时, AAA称为奇异矩阵, 否则称非奇异矩阵. 由上面两定理可知: AAA是可逆矩阵的充分必要条件是∣A∣≠0|A|\neq 0∣A∣=0, 即可逆矩阵就是非奇异矩阵
推论 若AB=IA B = IAB=I (或BA=IBA = IBA=I) , 则B=A−1B = A^{-1}B=A−1.
逆矩阵满足下述运算规律:
- 若AAA可逆, 则A−1A^{-1}A−1亦可逆,且(A−1)−1=A(A^{-1})^{-1} = A(A−1)−1=A;
- 若AAA可逆, 数λ≠0\lambda \neq 0λ=0, 则λA\lambda AλA可逆, 且(λA)−1=1λA−1(\lambda A)^{-1} =\frac{1}{\lambda} A^{-1}(λA)−1=λ1A−1
- 若AAA、BBB为同阶矩阵且均可逆, 则ABABAB亦可逆, 且(AB)−1=B−1A−1(AB)^{-1} =B^{-1}A^{-1}(AB)−1=B−1A−1
克拉默法则
克拉默法则 如果线性方程组
{a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2, ⋮an1x1+an2x2+⋯+annxn=bn.
\left\{
\begin{aligned}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\
&\;\;\vdots \\
a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n &= b_n.
\end{aligned}
\right.
⎩⎨⎧a11x1+a12x2+⋯+a1nxna21x1+a22x2+⋯+a2nxnan1x1+an2x2+⋯+annxn=b1,=b2,⋮=bn.
的系数矩阵AAA的行列式不等于零, 即
∣A∣=∣a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann∣≠0
|A|=\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}\neq 0
∣A∣=a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann=0
那么, 方程组有惟一解
x1=∣A1∣∣A∣,x2=∣A2∣∣A∣,⋯ ,xn=∣An∣∣A∣,
x_1=\frac{|A_1|}{|A|},x_2=\frac{|A_2|}{|A|},\cdots,x_n=\frac{|A_n|}{|A|},
x1=∣A∣∣A1∣,x2=∣A∣∣A2∣,⋯,xn=∣A∣∣An∣,
其中Aj(j=1,2,⋯ ,n)A_j(j=1,2,\cdots,n)Aj(j=1,2,⋯,n)是把系数矩阵AAA中第j列的元素用方程组右端的常数项代替后所得到的n阶矩阵, 即
Aj=(a11⋯a1,j−1b1a1,j+1⋯a1na21⋯a2,j−1b2a2,j+1⋯a2n⋮⋱⋮⋮⋮⋱⋮an1⋯an,j−1bnan,j+1⋯ann)
A_j = \begin{pmatrix}
a_{11} & \cdots & a_{1,j-1} & b_1 & a_{1,j+1} & \cdots & a_{1n} \\
a_{21} & \cdots & a_{2,j-1} & b_2 & a_{2,j+1} & \cdots & a_{2n} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{n,j-1} & b_n & a_{n,j+1} & \cdots & a_{nn} \\
\end{pmatrix}
Aj=a11a21⋮an1⋯⋯⋱⋯a1,j−1a2,j−1⋮an,j−1b1b2⋮bna1,j+1a2,j+1⋮an,j+1⋯⋯⋱⋯a1na2n⋮ann
矩阵分块法
对于行数和列数较高的矩阵AAA, 运算时常采用分块法, 使大矩阵的运算化成小矩阵的运算.将矩阵AAA用若干条纵线和横线分成许多个小矩阵, 每一个小矩阵称为AAA的子块, 以子块为元素的形式上的矩阵称为分块矩阵.
分块矩阵的运算规则与普通矩阵的运算规则相类似