柯宝最帅
好记性不如烂笔头
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【YOLOv5进阶】——替换主干网络(backbone)-MobileNet为例
替换网络主体,即配置文件中的backbone,这里以轻量级网络MobileNet的替换为例,替换后网络参数数量降低了近一半,速度快了1倍左右,但训练效果指标相比之前不佳。原创 2024-07-08 11:49:46 · 2215 阅读 · 7 评论 -
【YOLOv5进阶】——引入注意力机制-以SE为例
首先需要在backbone的最后加上SE模块(相当于多了一层为第10层);其次考虑到backbone里多了一层,且在head里的输入层来源不止上一层(-1)一个,所以输入层来源大于等于第10层的都需要改为往后递推+1层。原创 2024-07-02 14:42:25 · 3129 阅读 · 6 评论 -
【YOLOv5进阶】——修改网络结构(以C2f模块为例)
这里我们借鉴YOLOv8源码:上期说到,对于网络模块定义详情在common.py这个文件,如Conv、CrossConv、C3f等。原创 2024-06-10 10:54:15 · 1650 阅读 · 2 评论 -
【YOLOv5进阶】——模型结构与模型原理&YOLOv5源码解析
网络的具体结构在common.py、yolo.py、yolov5s.yaml这三个文件,修改网络结构是从这三个文件入手!原创 2024-06-03 17:00:06 · 1621 阅读 · 2 评论 -
【YOLOV5 入门】——Gradio搭建Web GUI
Gradio 是一个用于构建机器学习模型演示界面和Web应用的开源库。提供了简单易用的界面,使您可以快速地将机器学习模型部署为交互式应用程序,而无需编写大量的前端代码。简单易用!!原创 2024-05-14 20:47:41 · 2263 阅读 · 2 评论 -
【YOLOV5 入门】——Pyside6/PyQt5可视化UI界面&后端逻辑
安装完pyside6时其实一并安装了qtdesigner,这个工具可让我们以拖拽的方式设计界面,按下面方法找到这个工具放在桌面以便后续使用:终端输入:现在用的虚拟环境是第二个,找到找到虚拟环境path/lib/site-packages/Pyside6/designer.exe原创 2024-04-15 13:51:11 · 6672 阅读 · 26 评论 -
【拓展技术】——AutoDL服务器训练&Pycharm使用注意点&Pycharm配置AutoDL
AutoDL是一个为研究人员、开发者和企业提供的平台,它致力于提供一个高效、可靠和易用的环境,以支持复杂的计算任务和AI模型的部署。还介绍了Pycharm的解释器和终端配置,以及在Pycharm使用AutoDL进行训练。原创 2024-04-12 11:30:24 · 2940 阅读 · 4 评论 -
【YOLOV5 入门】——构建自己的数据集&模型训练&模型检验
用YOLOv5检测自己喜欢的动漫是什么体验!?原创 2024-04-04 13:51:45 · 1832 阅读 · 9 评论 -
【YOLOV5 入门】——detect.py简单解析&模型检测&基于torch.hub的检测方法
我用YOLOv5与名侦探柯南邂逅!基于torch.hub的检测方法是一种利用PyTorch Hub的功能来进行目标检测任务的方法。在进行目标检测时,可以通过函数来加载PyTorch Hub中提供的目标检测模型,然后利用加载的模型进行目标检测任务。原创 2024-03-28 09:56:33 · 5429 阅读 · 22 评论 -
【YOLOV5 入门】——环境配置(Miniconda/Pytorch/YOLOv5/PYPI镜像源)
YOLOv5用些新技术来提高训练和推理的效率,例如自动数据增强和模型压缩等。提高模型的鲁棒性和泛化能力,例如采用新的数据增强技术和正则化方法等。更深的网络结构和更高级的特征提取技术,从而使其在目标检测任务上表现更好。原创 2024-03-25 11:32:18 · 3458 阅读 · 15 评论 -
【模式识别&目标检测】——模式识别技术&车牌检测应用
①统计模式识别是基于统计学理论和模型的一种方法,主要关注特征提取和模型训练。它适用于各种数据类型,但需要具备较好的特征工程能力。②基于隐马尔可夫模型识别方法则着重在描述序列数据背后的状态变化,适用于时序数据的建模与识别。它可以考虑到时间上的依赖关系,但对初始状态和转移概率的假设限制较大。③模糊模式识别通过模糊化和去模糊化的过程,能够处理模糊性较强的输入数据。它可以应对不确定性和模糊性,但规则的定义需要领域知识的支持。原创 2023-07-04 11:30:25 · 3953 阅读 · 35 评论