Flink CDC整理

一、CDC简介

CDC(Change Data Capture,变更数据获取)

核心思想:监测并捕获数据库的变动(包括数据或表的增删改),将变动按顺序记录下来

种类:

社区开源地址:https://github.com/ververica/flink-cdc-connectors

二、实操

1)开启MySQL Binlog并重启MySQL

sudo vim /etc/my.cnf

查看默认存储位置binlog日志(根据配置 以mysql-bin开头)

切换到root用户:su -

cd /var/lib/mysql

注意binlog监控的数据库binlog-do-db  如有改动my.cnf  需重启数据库

systemctl restart mysqld

切回普通用户 exit

2)编写代码 并打包到集群运行

在pom.xml中导入依赖

注意版本与flink对应版本是否支持,查看官网:

Overview — CDC Connectors for Apache Flink® documentation (ververica.github.io)

<!--这里flink用的是1.17.0版本-->
<dependency>
    <groupId>com.ververica</groupId>
    <artifactId>flink-connector-mysql-cdc</artifactId>
    <version>2.4.0</version>
</dependency>

package com.atguigu.flinkcdc;

import com.ververica.cdc.connectors.mysql.source.MySqlSource;
import com.ververica.cdc.connectors.mysql.table.StartupOptions;
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * ClassName: CDC_Test
 * Package: com.atguigu.flinkcdc
 * Description:
 *
 * @Author Wish
 * @Create 2023/10/25 16:47
 * @Version 1.0
 */
public class CDC_Test {
    public static void main(String[] args) throws Exception {
        //todo 1.获取执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        //开启checkpoint
        env.enableCheckpointing(5000L);
        CheckpointConfig checkpointConfig = env.getCheckpointConfig();
        checkpointConfig.setCheckpointStorage("hdfs://hadoop102:8020/flinkcdc/checkpoint");

        //todo 2.创建MySQLsource
        MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
                .hostname("hadoop102")
                .port(3306)
                .databaseList("gmall")  //不写表则可以监控所有库 vim /etc/my.cnf
                .tableList("gmall.base_trademark")  //必须加库名  不写表则可以监控库中所有表
                .username("root")
                .password("000000")
                .deserializer(new JsonDebeziumDeserializationSchema())
                .startupOptions(StartupOptions.initial())
                //.startupOptions(StartupOptions.latest())
                .build();

        //todo 3.读取MySQL变化数据 并打印
        env.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "mysql-source").print();

        //todo 4.启动任务 设置任务名 在flink页面中显示
        env.execute("CDC_Test");
    }
}

Lifecycle-->package-->将jar包拖至虚拟机flink目录下-->运行

打包Java代码上传到集群运行时

bin/flink run -t yarn-per-job -c com.atguigu.flinkcdc.CDC_Test ./Flink-1.0-SNAPSHOT.jar 

三、问题

错误一:

Caused by: java.lang.NoClassDefFoundError: com/ververica/cdc/debezium/DebeziumDeserializationSchema
    at java.lang.Class.getDeclaredMethods0(Native Method)
    at java.lang.Class.privateGetDeclaredMethods(Class.java:2701)
    at java.lang.Class.privateGetMethodRecursive(Class.java:3048)
    at java.lang.Class.getMethod0(Class.java:3018)
    at java.lang.Class.getMethod(Class.java:1784)
    at org.apache.flink.client.program.PackagedProgram.hasMainMethod(PackagedProgram.java:307)
    ... 14 more
 

原因:

打包时未添加打包插件

解决:

在pom.xml中添加

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>3.2.4</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <artifactSet>
                                <excludes>
                                    <exclude>com.google.code.findbugs:jsr305</exclude>
                                    <exclude>org.slf4j:*</exclude>
                                    <exclude>log4j:*</exclude>
                                </excludes>
                            </artifactSet>
                            <filters>
                                <filter>
                                    <!-- Do not copy the signatures in the META-INF folder.
                                    Otherwise, this might cause SecurityExceptions when using the JAR. -->
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers combine.children="append">
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer">
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

重新打包上传运行

错误二:

Caused by: org.apache.hadoop.security.AccessControlException: Permission denied: user=root, access=WRITE, inode="/user":atguigu:supergroup:drwxr-xr-x

Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=root, access=WRITE, inode="/user":atguigu:supergroup:drwxr-xr-x


原因:

用户(user=root)在Hadoop分布式文件系统(HDFS)上尝试进行写操作(access=WRITE),但由于权限问题被拒绝(Permission denied)所引发的。错误消息表明用户 root 尝试在HDFS上的根目录 /user 进行写操作,但未获得足够的权限。

查看MySQL配置后未切换用户

解决方案:

切回普通用户

su atguigu

bin/flink run -t yarn-per-job -c com.atguigu.flinkcdc.CDC_Test ./Flink-1.0-SNAPSHOT.jar

错误三:

Could not get job jar and dependencies from JAR file: JAR file does not exist: ./Flink-1.0-SNAPSHOT.jar 

原因:

使用root用户上传的jar包 普通用户无法使用

jar包路径错误

解决方案:

rm -rf Flink-1.0-SNAPSHOT.jar

重新上传jar包 并重新运行

bin/flink run -t yarn-per-job -c com.atguigu.flinkcdc.CDC_Test Flink-1.0-SNAPSHOT.jar

<think>好的,我需要回答用户关于Flink CDC吞吐量性能优化的问题。首先,我得回顾一下Flink CDC的基本概念,确保自己理解正确。Flink CDC主要用于数据变更捕获,通过读取数据库的日志来实时同步数据。用户关心的是如何优化其吞吐量,也就是处理数据的速度和效率。 接下来,我需要整理常见的优化方法。首先想到的是资源调优,比如调整并行度。Flink任务的并行度直接影响处理能力,合理设置可以充分利用集群资源。另外,内存和网络配置也很重要,比如增加TaskManager的内存,调整缓冲区大小,减少网络传输的瓶颈。 然后是数据读取阶段的优化。Flink CDC在读取数据库日志时,可能需要调整读取批大小和间隔时间,以平衡延迟和吞吐量。此外,使用增量快照技术可以减少全量扫描的开销,提升效率。 数据处理逻辑的优化同样关键。用户代码中的转换操作是否高效?比如,过滤无效数据、避免不必要的序列化和反序列化操作,使用高效的算子如`map`代替`process`。窗口大小和状态后端的配置也会影响性能,比如使用RocksDB状态后端处理大状态,或者调整检查点间隔来减少开销。 接下来需要考虑的是外部系统的优化。例如,数据库本身的配置,比如日志写入速度、事务提交频率,以及网络带宽是否足够。目标系统的写入能力也需要评估,使用批量写入和连接池可以提升写入效率。 高级技术方面,旁路输出和异步IO可能有用。旁路输出处理不同优先级的数据,避免阻塞主流程。异步IO可以在等待外部系统响应时继续处理其他数据,提高吞吐量。 监控和诊断也不可忽视。通过Flink的Web UI监控背压、吞吐量指标,使用日志和Profiler工具分析性能瓶颈,比如高延迟的算子或频繁GC问题。 最后,生成相关问题时要确保覆盖用户可能感兴趣的扩展方向,比如基准测试、常见瓶颈、与批处理的比较,以及Exactly-Once语义的实现。 需要确保回答符合用户要求的结构,分点清晰,使用正确的中文和LaTeX格式。同时,注意引用用户提供的参考内容,但看起来该引用是关于Cassandra的,可能与当前问题关联不大,可能需要忽略或确认是否相关。不过用户示例中的引用可能只是示例,实际回答中如果没有相关引用,可以不添加,避免误导。 总结,我需要组织以上思路,分点阐述优化方法,每个部分给出具体措施,并生成相关问题。同时确保LaTeX语法正确,独立公式用$$,行内用$。例如,在提到吞吐量计算公式时,可以使用$$Throughput = \frac{Data Volume}{Time}$$。但需注意是否有必要引入公式,如果自然的话可以加入,否则可能不需要。可能用户的问题更多是实践性的,不需要复杂公式,因此可能省略。 检查是否有遗漏点,比如是否提到反压机制、检查点优化,或者连接池配置等。确保每个优化方法都有实际的操作建议,而不仅仅是理论。例如,调整并行度的具体建议,如何监控背压,或者使用异步IO的代码示例片段。 最后,生成的相关问题需要围绕Flink CDC的性能,如基准测试方法、常见瓶颈、与其他技术的比较,以及高级特性如Exactly-Once等。确保问题有逻辑关联,帮助用户深入探索。</think>### Flink CDC 吞吐量性能优化方法 Flink CDC 的吞吐量优化需从数据读取、处理逻辑、资源调配等多方面入手,以下是关键优化策略: --- #### 一、**资源调优** 1. **并行度调整** - **Source 并行度**:根据数据源分片数调整。例如,MySQL 分库分表场景中,设置与分片数相同的并行度。 - **算子链优化**:避免过长的算子链导致资源争用,可通过`disableOperatorChaining()`手动拆分链[^1]。 2. **内存与网络配置** - 增加 TaskManager 的堆内存(`taskmanager.memory.process.size`),减少 GC 频率。 - 调整网络缓冲区(`taskmanager.memory.network.fraction`),避免反压时数据堆积。 --- #### 二、**数据读取优化** 1. **日志解析效率** - 使用增量快照(**Incremental Snapshot**)减少全量扫描,例如 Debezium 的`snapshot.mode=initial`。 - 调整`chunk-size`参数,控制每次读取的数据量,避免内存溢出。 2. **数据库连接优化** - 配置连接池(如 HikariCP),复用数据库连接。 - 设置合理的`fetch-size`,减少单次查询的数据量。 --- #### 三、**处理逻辑优化** 1. **数据过滤与映射** - 在 Source 端尽早过滤无关字段(如通过`DebeziumOptions`跳过未变更数据)。 - 使用`Project`算子仅选择必要字段。 2. **异步与批量写入** - 目标库写入时启用批量提交(如 Kafka Producer 的`batch.size`)。 - 使用**Async I/O**异步写入外部系统,避免阻塞处理线程。 ```java AsyncDataStream.unorderedWait(stream, asyncFunction, timeout, TimeUnit.MILLISECONDS, capacity); ``` --- #### 四、**状态与检查点优化** 1. **状态后端选择** - 大状态场景使用 **RocksDB**(`state.backend: rocksdb`),减少内存占用。 - 启用增量检查点(`state.backend.incremental: true`)缩短检查点时间。 2. **检查点间隔调整** - 根据业务容忍度调整`checkpointInterval`,避免频繁触发检查点影响吞吐。 --- #### 五、**高级优化技术** 1. **动态反压处理** - 监控反压指标(通过 Flink Web UI),识别瓶颈算子并优化。 - 使用**旁路输出**(Side Output)分流高延迟数据流。 2. **分布式缓存预热** - 对维表关联场景,预加载维表数据到分布式缓存(如 Redis),减少实时查询开销。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值