Apriori算法的应用(python)

本文介绍了如何通过Python实现Apriori算法,详细步骤包括数据预处理、频繁项集生成、关联规则评估。实验过程中解决了数据操作冗余问题,最终揭示了Apriori算法在实际应用中的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

实验内容:
了解Apriori算法的实现过程以及应用原理,最后用Python实现Apriori聚类算法。


一、实验步骤以及实现

1.构造原始数据,通过def实现。
在这里插入图片描述
2.将所有元素转换为frozenset型字典,存放到列表中。
在这里插入图片描述

3.过滤掉不符合支持度的集合
在这里插入图片描述
4生成所有可以组合的集合。
在这里插入图片描述
5.对规则进行评估 获得满足最小可信度的关联规则。
在这里插入图片描述
6.生成候选规则集合。
在这里插入图片描述
7…建立main函数进行实现。

二、调试过程

1.找出所有的频繁项集。
在这里插入图片描述
2.由频繁项集产生强关联规则。
在这里插入图片描述
实验结果:
在这里插入图片描述


总结

实验结果:
通过Apriori算法,成功实现聚类算法,该算法是经典的挖掘频繁项集和关联规则的数据挖掘算法,通过构造模拟集合,发现了它运行的机制以及算法的原理。

遇到的问题:
1.刚开始数据操作杂糅,比较冗余。
解决方法:参考大佬给的提示和帮助,通过建立一个函数,将所有元素转换为frozenset型字典,存放到列表中,这方便以后直接可以将这些值作为字典的键,大大减少编写的难度,避免了杂糅。提高了可观性。
实验心得:
本次实验对Apriori关联算法有了一定的了解,该算法基于频繁项集和关联规则,和以往经历的算法并不一样,所以实现该算法的第一步就是构造好的频繁项集,并找出所有的频繁项集,来推出强关联规则,应用区域广泛,本次实验牛刀小试收获颇多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值