- 博客(176)
- 收藏
- 关注
原创 每天一个前端小知识 Day 33 - 虚拟列表与长列表性能优化实践(Virtual Scroll)
虚拟列表技术通过按需渲染可视区域内的DOM节点(如仅展示20项而非全部10000项),配合容器撑高和动态偏移计算,有效解决长列表性能问题。核心公式计算可视范围(startIndex/endIndex),原生JS可通过监听scroll事件实现动态渲染。主流框架推荐使用react-window/vue-virtual-scroller等工具,同时支持预加载、动态高度等进阶优化。该技术显著降低内存占用和渲染压力,适用于电商列表、聊天记录等大数据量场景,是前端性能优化的重要实践方案。
2025-07-16 22:58:41
598
原创 Python 数据建模与分析项目实战预备 Day 6 - 多模型对比与交叉验证验证策略
摘要:本文介绍了机器学习分类模型的比较方法,使用5折交叉验证评估逻辑回归、KNN、决策树、随机森林和SVM五种模型的性能。通过标准化数据后,分别计算各模型的准确率和AUC指标。结果显示逻辑回归表现最佳(准确率0.75±0.10,AUC 0.84±0.07),而决策树表现最差。文中提供了完整的Python实现代码,包括数据预处理、模型初始化和交叉验证过程,为分类任务模型选择提供了参考框架。
2025-07-15 21:32:39
197
原创 每天一个前端小知识 Day 32 - 前端调试技巧与开发者工具深度使用指南
摘要:《前端调试技巧与开发者工具深度使用指南》系统介绍了高级前端必备的调试能力,重点讲解了Chrome DevTools各模块(Elements、Console、Sources等)的实用技巧,包括断点调试、网络请求分析、内存泄漏检测等。文章提供了实战案例和面试常见问题解答,如接口报错排查、页面白屏分析等,并介绍了前端监控方案(Sentry、自研Logger等)。最后总结了调试能力、请求排查、性能调优等关键维度,帮助开发者建立系统化的调试思维和工具链应用能力。(149字)
2025-07-15 21:21:30
335
原创 Python 数据建模与分析项目实战预备 Day5 - 模型训练与评估
本文介绍了使用Scikit-learn构建简历筛选分类模型的完整流程。主要内容包括:1)采用逻辑回归作为基础模型,适合二分类任务;2)详细建模步骤:数据读取、模型训练、预测评估、模型保存;3)使用准确率、精确率、召回率、F1值和AUC等指标进行评估;4)提供了完整的Python实现代码示例,涵盖数据加载、模型训练、评估和保存等关键环节。该教程适合机器学习初学者学习分类模型的基本构建流程和评估方法,最终生成可保存的模型文件供后续使用。
2025-07-14 21:50:51
431
原创 每天一个前端小知识 Day 31 - 前端国际化(i18n)与本地化(l10n)实战方案
本文介绍了前端国际化(i18n)与本地化(l10n)的实战方案。首先区分了i18n(多语言能力准备)和l10n(特定语言适配)的概念差异,然后详细讲解了React/Vue等框架的i18n实现方式,包括JSON文件管理、Intl API处理时间/货币等本地化内容。文章提供了典型项目结构示例、初始化配置代码、组件使用方式以及语言切换技巧,并总结了常见问题与解决方案。最后强调了面试中可能涉及的i18n相关问题及回答要点,帮助开发者全面掌握前端国际化技能。
2025-07-14 21:45:50
521
原创 每天一个前端小知识 Day 30 - 前端文件处理与浏览器存储机制实践
本文系统介绍了前端文件处理与浏览器存储机制,涵盖文件上传预览、大文件分片上传、Blob下载等核心场景,对比分析了localStorage、sessionStorage、IndexedDB等存储方式的特性与适用场景。文章提供了实用代码示例,包括文件分片实现、本地存储封装工具等,并解答了面试常见问题,如FormData优势、断点续传实现等。通过掌握这些浏览器底层API,开发者能有效处理复杂业务需求,体现扎实的技术能力。
2025-07-13 23:49:01
770
原创 Python 数据建模与分析项目实战预备 Day 4 - EDA(探索性数据分析)与可视化
本文介绍了一个使用Python进行简历数据探索性分析(EDA)的完整流程。目标是通过Pandas和Matplotlib/Seaborn分析简历筛选的潜在规律,主要包含三部分内容:1) 分类字段分析,如学历与学校类型对通过率的影响;2) 数值字段分析,包括工龄、项目数量和描述长度的分布;3) 多变量交叉分析。文中提供了完整的Python实现代码,涵盖数据读取、可视化设置、多种图表绘制(柱状图、箱型图、散点图、热力图)以及结果保存功能,特别考虑了中文显示兼容性问题。最终输出多张分析图表,帮助理解不同特征与简历筛
2025-07-13 23:48:03
252
原创 Python 数据建模与分析项目实战预备 Day 3 - 特征工程基础与数据预处理(针对简历结构化数据)
本文介绍了简历数据预处理流程,主要包含特征分类、处理方法和Python实现步骤。将字段分为分类变量(如学历、学校类型)、布尔变量(如技能掌握)和数值变量(如工作经验),分别进行One-Hot编码和标准化处理。重点演示了使用pandas.get_dummies()和StandardScaler进行特征工程,并通过train_test_split划分数据集。最后附完整Python脚本,实现从原始数据读取到预处理结果保存的全流程,输出标准化的训练/测试集文件。该流程适用于构建机器学习模型前的数据准备阶段。
2025-07-12 20:07:36
413
原创 每天一个前端小知识 Day 29 - 前端中的时间、节流、防抖与事件优化机制
本文介绍了前端开发中节流(throttle)和防抖(debounce)两种事件优化机制。它们通过控制函数执行频率来提升性能,适用于高频触发场景如搜索输入、滚动监听等。防抖是在事件触发后延迟执行,期间再次触发则重置延时;节流则是固定间隔执行一次。文章对比了两者的区别,提供了手写实现代码和Lodash库用法,并分析了常见应用场景和面试问题。掌握这两种技术能有效优化页面性能,体现前端开发者的专业素养。
2025-07-12 20:03:24
568
原创 每天一个前端小知识 Day 28 - Web Workers / 多线程模型在前端中的应用实践
摘要:Web Workers 是前端实现多线程的关键技术,能够将计算密集型或IO密集型任务移至后台线程,避免主线程阻塞导致的UI卡顿。文章介绍了Web Workers的核心机制、创建方法、典型应用场景(如大数据处理、加密运算)及其与主线程的通信原理(postMessage/onmessage)。同时指出了Web Workers的限制(如无法访问DOM)和最佳实践建议(如使用Worker池、Comlink优化通信)。最后对比了Web Worker与Service Worker的区别
2025-07-11 22:51:07
1010
原创 Python 数据建模与分析项目实战预备 Day 2 - 数据构建与字段解析(模拟简历结构化数据)
摘要:本文介绍了构建简历结构化数据集的过程,包含三个主要步骤:(1)设计9个核心字段,包括学历、学校等级、工作年限、技能掌握情况等项目,并定义数据类型和取值;(2)通过Python代码模拟生成200条简历数据,设定学历越高、技能越多则通过率越高的生成规则;(3)最终输出包含字段说明文档和CSV格式训练数据集(resume_data.csv),该数据集将用于后续简历筛选模型的训练。
2025-07-11 22:48:01
544
原创 Python 数据建模与分析项目实战预备 Day 1 - 数据建模与分析项目实战预备:项目规划与需求拆解
本文介绍了数据分析/建模项目的通用流程,并提供了求职者简历筛选模型的项目计划范例。主要内容包括:项目目标(自动化简历筛选)、数据来源(模拟/开源数据集)、建模方法(逻辑回归/XGBoost等)、评估指标(准确率/F1值等)和6周实施计划。项目成果将包含可运行的预测模型系统及分析报告。该模板可灵活应用于成绩预测、电商分析等其他数据项目,强调从需求理解到模型部署的全流程管理。
2025-07-10 23:54:42
625
原创 每天一个前端小知识 Day 27 - WebGL / WebGPU 数据可视化引擎设计与实践
WebGL/WebGPU数据可视化引擎为前端提供高性能图形渲染能力,突破传统图表库的局限。WebGL基于Three.js适合3D可视化、粒子系统等场景,而WebGPU作为未来趋势,支持并行计算和AI推理。设计可视化引擎需考虑渲染优化、图层管理和事件系统等模块。WebGL/WebGPU技术扩展了前端在可视化、图形和AI领域的应用边界,是提升技术广度的关键方向。
2025-07-10 23:36:14
790
原创 每天一个前端小知识 Day 26 - 前端架构与模块设计最佳实践(微前端 & 插件化设计)
本文探讨了前端架构与模块设计的最佳实践,重点分析了微前端和插件化两种主流方案。文章首先指出前端架构设计的核心目标是解决模块耦合、代码复用和动态扩展等问题,随后详细介绍了微前端架构(如Qiankun、single-spa)的实现原理、优缺点和使用场景,以及插件化系统的关键设计要素(生命周期管理、隔离机制等)。文中还提炼了模块设计的通用原则(低耦合、单一职责等),并针对面试常见问题提供了专业解答。最后总结不同架构方式的适用场景,强调架构设计能力对前端开发者技术深度和工程思维的重要性。
2025-07-09 21:37:08
829
原创 Python 机器学习核心入门与实战进阶 Day 7 - 复盘 + 综合实战挑战
📌 学生及格预测系统项目总结 本项目构建了一个完整的机器学习流水线,用于预测学生是否及格。系统整合了SVM分类器、网格搜索调参和模型持久化功能,实现了以下核心流程: 1️⃣ 数据准备 模拟200条学生数据,包含标准化成绩、性别、缺勤记录3个特征 标签逻辑:成绩≥60且不缺勤则判定为及格 2️⃣ 模型训练 采用Pipeline整合标准化与SVM分类器 GridSearchCV优化参数(最佳:C=10, kernel=rbf) 测试集准确率达97.5%,模型保存为joblib文件 3️⃣ 预测应用 提供交互式
2025-07-09 21:36:08
444
原创 每天一个前端小知识 Day 25 - 前端大文件上传 + 分片 + 秒传实现方案
本文介绍了前端大文件上传的优化方案,核心采用分片上传+秒传机制。传统上传方式存在大文件阻塞主线程、断网需重传等问题。解决方案包括:1) 文件切片(默认10MB/片);2) 使用SparkMD5计算文件hash实现秒传;3) 并发上传缺失分片;4) 支持断点续传和进度反馈。服务端需提供文件检查、分片上传和合并接口。该方案体现前后端协同设计能力,是处理大文件上传的完整技术方案,具有实际应用价值和面试加分意义。
2025-07-08 23:59:44
432
原创 Python 机器学习核心入门与实战进阶 Day 6 - 模型保存与加载(joblib / pickle)
本文介绍了机器学习模型持久化的两种方法:joblib和pickle。joblib适用于大模型保存,速度快;pickle为Python原生工具,通用性更强。通过示例代码展示了两种工具的基本用法,并建议完整练习"训练→保存→加载→预测"流程,为模型部署做准备。文末提供了SVM模型保存与加载的完整练习脚本,涵盖数据准备、模型训练、保存加载及预测评估等步骤。
2025-07-08 23:58:57
338
原创 每天一个前端小知识 Day 24 - WebRTC & WebSocket 实时通信机制详解
WebRTC与WebSocket实时通信机制对比 WebSocket是基于TCP的全双工通信协议,适用于客户端与服务器的低延迟双向数据传输(如聊天、实时推送),相比HTTP长轮询更高效。WebRTC则是浏览器间P2P音视频/数据传输协议,通过ICE/STUN/TURN实现超低延迟通信(如视频会议)。两者常结合使用:WebSocket处理信令(连接协商),WebRTC传输媒体流。WebSocket需wss://加密,WebRTC要求HTTPS环境并需用户授权媒体访问。WebSocket适合通用消息场景,Web
2025-07-07 23:28:47
589
原创 Python 机器学习核心入门与实战进阶 Day 5 - 模型调参与交叉验证技巧(GridSearchCV、KFold)
本文介绍了机器学习模型调参的核心方法与实践技巧。主要内容包括:1)三种调参方法对比(网格搜索、随机搜索、贝叶斯优化);2)GridSearchCV工具的使用步骤与参数设置;3)K折交叉验证原理及其提升模型泛化能力的作用;4)Pipeline管道技术简化预处理与建模流程;5)调参实用技巧(优先关键参数、控制计算量等)。通过一个SVM分类案例,展示了完整的调参实践流程,包括参数搜索、交叉验证和测试评估,最终获得95%测试准确率。这些方法能有效平衡欠拟合与过拟合,提升模型鲁棒性。
2025-07-07 23:27:15
343
原创 Python 机器学习核心入门与实战进阶 Day 4 - 支持向量机(SVM)原理与分类实战
本文介绍了支持向量机(SVM)分类器的基本原理与应用。主要内容包括:1) SVM核心概念:支持向量、间隔最大化和核函数的作用;2) 使用sklearn.svm.SVC实现分类任务,重点参数如kernel、C和gamma的解释;3) 通过学生成绩分类案例演示训练过程,比较线性与RBF核函数的分类表现;4) 提供网格搜索等调参方法;5) 完整代码实现包括数据构造、模型训练、可视化决策边界及评估指标。文中强调了核函数选择对处理非线性分类问题的重要性,并通过可视化对比展示了不同核函数的分类边界差异。
2025-07-06 23:45:39
513
原创 每天一个前端小知识 Day 23 - PWA 渐进式 Web 应用开发
PWA(渐进式Web应用)通过Service Worker实现离线缓存、Web Manifest支持桌面安装,让Web应用获得接近原生App的体验。核心包含三大能力:可安装性、离线访问和响应式设计。开发时需要配置manifest.json定义元信息,注册Service Worker进行资源缓存,并确保HTTPS环境。主流前端框架如Vue/React可通过插件快速集成PWA。相比原生App,PWA具有跨平台、免安装等优势,适用于资讯、电商等需要提升用户留存率的场景。调试时可使用Chrome开发者工具验证PWA
2025-07-06 23:40:59
858
原创 Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
本文介绍了决策树与随机森林模型的实战应用。主要内容包括:决策树的基本原理(信息熵、基尼系数等分裂标准)、模型构建方法(使用sklearn的DecisionTreeClassifier和RandomForestClassifier)、模型评估与可视化技术。重点对比了决策树(可解释性强但易过拟合)和随机森林(精度高但解释性中等)的特点,提供了完整的Python实现示例,包含数据准备、模型训练、评估指标计算和决策树可视化。通过学生成绩预测案例,展示了如何调节参数(如max_depth)和查看特征重要性,帮助读者掌
2025-07-05 22:58:00
490
1
原创 每天一个前端小知识 Day 22 - WebAssembly 与前端性能优化
摘要: WebAssembly(WASM)是一种高效、安全的浏览器字节码格式,支持C/C++/Rust等语言编译,执行性能接近原生,适用于图像处理、加密计算、游戏引擎等高负载场景。与JavaScript相比,WASM具备静态类型、二进制体积小、无GC等优势,但需通过工具链(如Emscripten)编译并与JS交互。在前端中,WASM常与React/Vue集成,优化核心计算模块,提升性能。其局限性包括调试复杂、无法操作DOM等。WASM并非替代JS,而是性能补充,适用于特定高性能需求场景。
2025-07-05 22:50:49
1044
原创 每天一个前端小知识 Day 21 - 浏览器兼容性与 Polyfill 策略
实践项推荐工具/手段JS 转译CSS 自动兼容core-js, fetch, intl 等模块格式统一ESM 输出 + 构建打包浏览器兼容测试自适应设计(不同设备)浏览器兼容性是工程稳定性的保障。前端开发者不仅要掌握新技术,更要负责内容在各种设备与环境下的“可用性”。合理使用 Babel、polyfill、模块格式转换、构建目标配置等策略,可以让你的项目运行在尽可能多的设备上无障碍使用。
2025-07-04 23:50:47
1129
原创 Python 机器学习核心入门与实战进阶 Day 2 - KNN(K-近邻算法)分类实战与调参
本文介绍了KNN算法的核心原理与实践应用。KNN是一种基于"以邻为近"思想的懒惰学习算法,通过计算待预测样本与训练集中最近K个样本的距离进行多数投票预测。文章详细讲解了K值选择对模型的影响,并提供了使用sklearn实现KNN分类的完整代码示例,包括数据划分、模型训练、预测评估等步骤。特别强调了通过GridSearchCV进行超参数调优的方法,给出了K值调优的具体实现代码。最后,建议通过学生成绩分类的实践练习巩固所学知识,包括K值比较、可视化分析等环节,并附上了完整的练习脚本和运行结果。
2025-07-04 23:49:30
1003
原创 每天一个前端小知识 Day 20 - 服务端渲染(SSR)与前后端一体化开发详解
服务端渲染和前后端一体化是前端发展的新阶段,它结合了前端可交互性与后端的稳健性,实现更快、可 SEO、更强体验感的现代 Web 应用。掌握 Next.js/Nuxt/Vite SSR 体系,可以让你胜任从页面到服务的全流程工程师。
2025-07-03 22:46:27
869
原创 Python 机器学习核心入门与实战进阶 Day 1 - 分类 vs 回归
监督学习的两大任务类型:分类与回归的本质区别在于输出结果。分类任务输出离散的类别标签(如是否及格),回归任务输出连续的数值预测(如具体分数)。不同模型适用于不同任务:Logistic回归仅用于分类,线性回归仅用于回归,决策树等则两者皆可。两类任务评估指标也不同,分类常用准确率、F1值,回归则用均方误差、R²等。实践时应根据目标变量是类别还是数值来选择任务类型,并匹配相应模型和评估方法。典型应用场景包括医疗诊断(分类)和房价预测(回归)等。
2025-07-03 22:40:37
597
原创 每天一个前端小知识 Day 19 - 前端 CI/CD 自动化部署体系全流程
前端CI/CD自动化部署体系全流程解析:通过GitHub Actions等工具实现代码提交后自动构建、测试和部署到Vercel/Netlify或自建服务器。关键点包括多环境配置(.env文件)、Docker容器标准化部署、上线通知机制等。实践CI/CD不仅能提升发布效率,更是前端工程化能力的重要体现,在面试中常被考察部署流程和环境管理经验。从静态站点到企业级应用,合理选择部署方案可显著提升团队协作质量。
2025-07-02 19:51:45
558
原创 Python 数据分析与可视化 Day 14 - 建模复盘 + 多模型评估对比(逻辑回归 vs 决策树)
这篇文章总结了本周数据分析与建模的最后阶段,重点训练决策树模型并与逻辑回归进行对比评估。主要内容包括:1) 回顾本周数据预处理流程;2) 决策树模型的训练实现;3) 通过分类报告和可视化图表比较两种模型的准确率、精确率、召回率和F1分数等指标;4) 提供完整的Python实现脚本,包含数据加载、模型训练、评估和结果可视化功能;5) 总结不同模型的特点,强调应根据业务需求选择合适的模型。文章通过代码示例和可视化结果展示了机器学习模型评估的全流程。
2025-07-02 19:48:28
1046
1
原创 每天一个前端小知识 Day 18 - 浏览器工作原理与渲染机制详解
浏览器工作原理与渲染机制详解:现代浏览器采用多进程架构,核心渲染流程从HTML解析到屏幕显示经历DOM树构建、CSSOM树生成、渲染树合成、布局计算、绘制和图层合成等关键步骤。优化要点包括减少回流重绘(如使用transform替代top/left)、合理调度JavaScript执行(Event Loop机制)、利用合成层实现GPU加速。理解浏览器原理有助于解决页面卡顿、优化性能,并应对技术面试中的底层问题。
2025-07-01 20:24:44
959
原创 Python 数据分析与可视化 Day 13 - 逻辑回归模型训练与评估(分类模型实战)
本文介绍了逻辑回归分类模型的完整实现流程。首先讲解了逻辑回归的基本原理及其在二分类问题中的应用场景。随后详细演示了使用Scikit-learn构建分类模型的步骤:1)加载并准备训练数据;2)构建和训练LogisticRegression模型;3)进行预测并评估模型性能,包括计算准确率、混淆矩阵和分类报告。文章还解释了准确率、精确率、召回率等关键评估指标的含义,并提供了完整的代码示例,展示了从数据加载到结果保存的全过程。最后总结了模型构建、训练、预测和评估各环节使用的主要工具和函数。
2025-07-01 20:21:32
690
原创 每天一个前端小知识 Day 17 - 微前端架构实战与 Module Federation
《微前端架构实战与Module Federation解析》摘要:微前端解决了传统SPA构建缓慢、协作困难、技术栈迁移难等问题,通过拆分独立子应用实现独立开发部署。主流方案包括iframe、JS沙箱和Webpack5的Module Federation。Module Federation通过构建时解耦和运行时共享模块,支持多系统协作和渐进式迁移。对比qiankun等方案,Module Federation性能更优但需熟悉Webpack配置。微前端需处理路由隔离、状态管理和样式污染,适合多团队协作的大型项目,但
2025-06-30 22:15:12
1099
原创 Python 数据分析与可视化 Day 12 - 建模前准备与数据集拆分
摘要:本文介绍了机器学习建模前的数据准备流程,包括特征工程后的数据集划分方法与实操步骤。主要内容涵盖:(1)使用pandas提取特征列(X)和标签列(y);(2)通过sklearn的train_test_split()按比例划分训练/测试集;(3)保存拆分结果至CSV文件;(4)检查类别平衡性。文中提供了完整的Python代码示例和输出结果,演示了从特征选择到数据保存的全流程,并强调随机种子设置、样本比例验证等关键注意事项。最后总结了数据准备各阶段使用的工具和方法。
2025-06-30 22:10:38
817
1
原创 每天一个前端小知识 Day 16 - 前端性能优化全流程指南
《前端性能优化全流程指南》系统性地介绍了从加载到交互的性能优化策略。文章分为四大核心维度:加载阶段(首屏速度、资源压缩)、渲染阶段(减少回流重绘)、交互阶段(保持高帧率)和持久运行阶段(内存与缓存管理)。关键技术包括资源压缩、代码拆分、懒加载、虚拟滚动、防抖节流等,并提供Webpack/Vite工程化实践方案。指南还解析了常见面试问题,强调性能优化是提升用户体验的综合性工作,需要开发者具备多层次的系统理解能力。通过全流程优化,开发者能从执行者进阶为体验设计者。
2025-06-29 20:40:02
518
原创 Python 数据分析与可视化 Day 11 - 特征工程基础
本文介绍了特征工程在数据分析和机器学习中的核心作用,主要包括:1)类别变量编码(标签编码和独热编码);2)数值特征处理(标准化和归一化);3)派生特征创建(如成绩分段、是否及格);4)时间特征提取(年月日、周几等)。通过Python代码示例演示了具体实现方法,强调特征工程是提升模型效果的关键环节,需要根据数据类型选择合适的处理方法。文章还提供了完整的特征工程实践脚本,涵盖数据加载、特征转换到结果保存的全流程。
2025-06-29 20:37:06
1169
原创 Python 数据分析与可视化 Day 10 - 数据合并与连接
本文介绍了Pandas数据合并的四种主要方法:1)concat()用于表格的行列拼接;2)merge()实现类似SQL的join操作,支持inner/left/right/outer四种连接方式;3)join()基于索引快速合并;4)combine_first()用于多源数据补全。通过学生信息与成绩表等示例,演示了不同方法的适用场景和操作差异,强调数据整合对建模准备的重要性,建议重点掌握merge和concat的灵活使用。文末提供了方法对比表和练习建议,帮助读者巩固数据连接技能。
2025-06-28 22:14:21
759
原创 每天一个前端小知识 Day 15 - CSS 高级技巧与原子化设计体系实践
本文介绍了CSS高级技巧与原子化设计体系实践,总结了CSS写法的进化路线:从全局CSS、BEM到CSS Modules、Scoped CSS,最终到原子化CSS。重点解析了BEM命名规范、CSS Modules、Scoped CSS等模块化方案,并详细介绍了Tailwind CSS的原子化设计优势,包括其语法、响应式处理及动态class合并工具。文章还提供了响应式布局体系和动态样式控制策略的实战技巧,并精选了面试高频问题,帮助开发者掌握现代CSS工程化方案,构建高性能、可维护的前端系统。
2025-06-28 22:07:15
339
原创 每天一个前端小知识 Day 14 - 前端状态管理深入实践
本文对比了主流前端状态管理工具Redux、Pinia和Zustand的核心特性与应用场景。Redux以单一数据源和不可变状态著称,适合复杂React项目;Pinia作为Vue3官方方案,采用组合式API更轻量;Zustand则凭借无上下文依赖和极简设计成为React轻量级优选。文章从原理、使用示例、工具链和面试要点等维度进行分析,并给出状态管理分层设计建议:UI状态保留在组件,页面级用context,应用级采用集中store。最后强调应根据项目规模和框架特性选择合适的工具,合理组织状态逻辑。
2025-06-27 22:38:12
660
原创 Python 数据分析与可视化 Day 9 - 缺失值与异常值处理技巧
本文总结了数据清洗中处理缺失值和异常值的关键方法。缺失值处理包括检查、删除、填充和替换无效数据,推荐使用均值填充或前后向填充。异常值检测介绍了Z-Score法和箱型图IQR法,可通过删除或用边界值替换处理异常值。文章提供了完整的Python实现流程,包括数据加载、统计检验、可视化及结果保存,并强调根据实际场景选择处理方法对后续建模质量的重要性。练习建议使用真实学生数据实践多种处理技术,对比清洗前后效果。
2025-06-27 22:36:34
854
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人