
人工智能项目实战-【AI智能五子棋项目的开发】
文章平均质量分 92
陈丹宇jmu
JMUer学习网络工程两年半的新晋创作者,分享日常学习的笔记心得,不定期更新但总会更新。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[游戏测试]基于人工智能博弈树,极大极小(Minimax)搜索算法并使用Alpha-Beta剪枝算法优化实现的可人机博弈的AI智能五子棋游戏。
本次的内容是对于先前设计的AI智能五子棋游戏的程序软件测试说明,也是我第一次尝试对软件测试写的一次测试报告,万事开头难,我把我进行软件测试的过程发布在本节内容,大家一起学起来啦,恳请路过的大佬可以在评论中不吝赐教,谢谢啦。游戏软件测试情况测试数据说明白盒测试学习黑盒测试学习测试用例Debug分析测试结果总结原创 2023-01-08 21:46:29 · 1361 阅读 · 1 评论 -
人工智能算法--启发式搜索与估值函数
学习和掌握人工智能启发式搜索与估值函数的相关概念原创 2023-01-06 15:59:11 · 1819 阅读 · 0 评论 -
人工智能算法模型--Alpha-Beta剪枝算法学习笔记
本篇主要内容Alpha-Beta剪枝算法Alpha-Beta算法的由来Alpha-Beta算法原理Alpha-Beta算法剪枝过程Alpha-Beta算法剪枝伪代码原创 2023-01-05 20:37:48 · 2672 阅读 · 0 评论 -
人工智能算法模型--Minimax(极大极小)搜索算法学习笔记
本篇的主要内容:Minimax算法(极大极小算法)学习和掌握Minimax算法的实现原理Minimax算法的描述Minimax算法的实例演示过程原创 2023-01-05 20:17:48 · 5351 阅读 · 0 评论 -
[选题与需求分析]-基于人工智能博弈树,极大极小(Minimax)搜索算法并使用Alpha-Beta剪枝算法优化实现的可人机博弈的AI智能五子棋游戏。
这个系列的博客带来的是基于人工智能博弈树,极大极小(Minimax)搜索算法并使用Alpha-Beta剪枝算法优化实现的可人机博弈的AI智能五子棋游戏。原创 2023-01-04 22:49:07 · 1005 阅读 · 0 评论 -
[Amazon]人工智能入门学习笔记---AI-机器学习-深度学习
机器学习”是个很酷的名字,简单地按照字面理解,它的目的是让机器能像人一样具有学习能力。但在其十年的黄金发展期,机器学习界并没有过多地炒作“智能”或者“认知”,而是关注于引入统计学等来建立学科的理论基础,面向数据分析与处理,以无监督学习和有监督学习为两大主要的研究问题,提出和开发了一系列模型、方法和计算算法等,切实地解决了工业界所面临的一些实际问题。相信在不久的将来,我们能够接触和使用到智能,敏捷,更可靠的人工智能应用。原创 2023-01-04 12:02:36 · 2113 阅读 · 3 评论 -
[程序设计]基于人工智能博弈树,极大极小(Minimax)搜索算法并使用Alpha-Beta剪枝算法优化实现的可人机博弈的AI智能五子棋游戏。
绪论-五子棋的特点与规则五子棋是两方之间进行的竞技活动,专用棋盘为15*15,五连子的方向为横、竖、斜;任一方在棋盘上形成横向、竖向、斜向的连续的相同颜色的五个(含五个以上)时即为该方胜利;在棋盘上以对局双方均不可能形成五连为和棋。黑白双方依次落子,由黑方先下,由于先下一方在局面上占优,所以五子棋规则分为禁手和无禁手两种。禁手规则:禁手是针对先行的黑棋而言,以限制黑棋的先行优势为目的。对局中如果黑棋违反禁手规则将被判负。原创 2023-01-03 20:37:18 · 1852 阅读 · 0 评论 -
[项目说明]-基于人工智能博弈树,极大极小(Minimax)搜索算法并使用Alpha-Beta剪枝算法优化实现的可人机博弈的AI智能五子棋游戏。
本系统中游戏的每一个功能在程序中都是一个相对独立的模块,比如,视觉界面模块,规则判定模块,AI智能算法模块,功能部件模块等等在程序中都是独立的,但它们之间通过逻辑关系的链接又构成了一个可以使游戏正常运行的程序。其次,依托设计的估值函数评价得出每个落子节点的价值,使电脑能够判断出下一步对自己最有利的落子位置,最后,为了优化搜索的过程,引入Alpha-Beta剪枝算法提高搜索的效率并节省内存的开销。功能部件模块主要实现程序的兼容性问题,以及理清各个功能模块在整个程序的逻辑关系,是程序可以正常运行的保障。原创 2023-01-03 20:14:33 · 1359 阅读 · 0 评论