torch与python对应表

### PyTorchPython的关系 PyTorch是一个基于Python的科学计算包,专为动态图而设计,在机器学习领域广泛应用。作为Python库的一部分,PyTorch完全兼容Python生态系统中的其他工具和库[^1]。 安装PyTorch通常通过`pip`完成,这是Anaconda环境中默认使用的软件包管理系统之一[^3]。一旦安装完毕,可以在任何Python脚本或交互式解释器中导入并使用PyTorch模块: ```python import torch print(torch.__version__) ``` 这段代码展示了如何引入PyTorch库,并打印其版本号来验证是否正确加载。 ### 使用PyTorch进行基本操作 为了展示PyTorch的功能以及它Python之间的紧密联系,下面的例子创建了一个简单的张量(Tensor),这相当于NumPy数组但在GPU上运行得更快: ```python # 创建一个随机初始化的二维张量 x = torch.rand(5, 3) print(x) # 将该张量移动到CUDA设备(如果可用) if torch.cuda.is_available(): device = torch.device('cuda') y = x.to(device) print(y) else: print("CUDA not available") ``` 此示例说明了即使是在处理复杂的数值运算时,PyTorch仍然保持简洁易读的语法风格,继承自Python语言本身的特点。 ### 构建简单神经网络模型 除了基础的数据结构外,PyTorch还提供了丰富的API用于构建深度学习模型。以下是如何定义一个多层感知机(Multi-Layer Perceptron)来进行MNIST手写数字识别的任务: ```python class Net(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(784, 512) # 输入层至隐藏层 self.fc2 = nn.Linear(512, 10) # 隐藏层至输出层 def forward(self, x): x = x.view(-1, 784) # 展平输入图像 x = torch.relu(self.fc1(x)) # 应用ReLU激活函数 x = self.fc2(x) # 输出未加softmax的结果 return x # 返回logits向量供后续交叉熵损失计算 model = Net() print(model) ``` 上述代码片段不仅体现了面向对象编程的思想,同时也证明了PyTorch能够无缝集成于现代Python开发流程之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值