Hadoop整合

本文详细介绍了Hadoop的整合,包括Hadoop的介绍、集群搭建、MapReduce和YARN的工作原理、HDFS的文件系统、数据压缩、YARN的资源调度等关键知识点。内容涵盖从Hadoop集群环境的准备,如安装虚拟机、配置网络、安装JDK和Hadoop,到完全分布式运行模式的设置,以及YARN的调度器和调度算法。同时,还深入探讨了Hadoop数据压缩的策略和不同压缩编码的比较。最后,讲解了Yarn的基础架构、工作机制以及调度器的使用,包括FIFO、Capacity Scheduler和Fair Scheduler。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

Hadoop整合

1、Hadoop介绍

Hadoop是Apache旗下的一个用java语言实现开源软件框架,是一个开发和运行处理大规模数据的软件平台。允许使用简单的编程模型在大量计算机集群上对大型数据集进行分布式处理。

狭义上说,Hadoop指Apache这款开源框架,它的核心组件有:

HDFS(分布式文件系统):解决海量数据存储

YARN(作业调度和集群资源管理的框架):解决资源任务调度

MAPREDUCE(分布式运算编程框架):解决海量数据计算

广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。

框架 用途
HDFS 分布式文件系统
MapReduce 分布式运算程序开发框架
ZooKeeper 分布式协调服务基础组件
HIVE 基于HADOOP的分布式数据仓库,提供基于SQL的查询数据操作
FLUME 日志数据采集框架
oozie 工作流调度框架
Sqoop 数据导入导出工具(比如用于mysql和HDFS之间)
Impala 基于hive的实时sql查询分析
Mahout 基于mapreduce/spark/flink等分布式运算框架的机器学习算法库

2、Hadoop集群

2.1、Hadoop集群(HDFS、YARN)

  • Hadoop集群包括两个集群:HDFS集群、YARN集群

  • 两个集群逻辑上分离、通常物理上在一起

  • 两个集群都是标准的主从架构集群
    在这里插入图片描述

  • 逻辑上分离
    两个集群互相之间没有依赖、互不影响

  • 物理上在一起
    某些角色进程往往部署在同一台物理服务器上

  • MapReduce集群呢?
    MapReduce是计算框架、代码层面的组件 没有集群之说

HDFS:
在这里插入图片描述

NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、 文件权限),以及每个文件的块列表和块所在的DataNode等。

DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。

Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份。

YARN:

Yet Another Resource Negotiator 简称 YARN ,另一种资源协调者,是 Hadoop 的资源管理器。

在这里插入图片描述

在这里插入图片描述

2.2、MapReduce架构

MapReduce 将计算过程分为两个阶段:Map 和 Reduce

(1)Map 阶段并行处理输入数据

(2)Reduce 阶段对 Map 结果进行汇总
在这里插入图片描述

2.3、HDFS、YARN、MapReduce三者间关系和大数据技术生态体系

在这里插入图片描述

在这里插入图片描述

2.4、Hadoop部署模式

在这里插入图片描述

2.5、Hadoop源码编译

在这里插入图片描述

2.6、Hadoop运行环境搭建(重点)

详细见虚拟机环境配置文件

2.6.1、安装虚拟机VMware
2.6.2、配置VM、虚拟机和安装Centos
2.6.3、配置VM、Win10、虚拟机的IP
2.6.4、修改主机名和映射host文件
2.6.5、远程终端工具安装-xshell,传输工具-xftp
2.6.6、 模板虚拟机环境准备
  1. 安装模板虚拟机,IP 地址 192.168.10.100、主机名称 hadoop100、内存 4G、硬盘 50G

  2. hadoop100 虚拟机配置要求如下(本文 Linux 系统全部以 CentOS-7.5-x86-1804 为例)

    1. 使用 yum 安装需要虚拟机可以正常上网,yum 安装前可以先测试下虚拟机联网情况

    [root@hadoop100 ~]# ping www.baidu.com

    PING www.baidu.com (14.215.177.39) 56(84) bytes of data.

    64 bytes from 14.215.177.39 (14.215.177.39): icmp_seq=1

    ttl=128 time=8.60 ms

    64 bytes from 14.215.177.39 (14.215.177.39): icmp_seq=2

    ttl=128 time=7.72 ms

    1. 安装 epel-release 注:Extra Packages for Enterprise Linux 是为“红帽系”的操作系统提供额外的软件包, 适用于 RHEL、CentOS 和 Scientific Linux。相当于是一个软件仓库,大多数 rpm 包在官方 repository 中是找不到的)

      [root@hadoop100 ~]# yum install -y epel-release

    2. **注意:**如果 Linux 安装的是最小系统版,还需要安装如下工具;如果安装的是 Linux 桌面标准版,不需要执行如下操作

      1. net-tool:工具包集合,包含 ifconfig 等命令

      [root@hadoop100 ~]# yum install -y net-tools

      1. vim:编辑器

        [root@hadoop100 ~]# yum install -y vim

  3. 关闭防火墙,关闭防火墙开机自启

[root@hadoop100 ~]# systemctl stop firewalld

[root@hadoop100 ~]# systemctl disable firewalld.service

在这里插入图片描述

  1. 配置 join 用户具有 root 权限,方便后期加 sudo 执行 root 权限的命令

    [root@hadoop100 ~]# vim /etc/sudoers

    修改/etc/sudoers 文件,在%wheel 这行下面添加一行,如下所示:

    ## Allow root to run any commands anywhere

    root ALL=(ALL) ALL

    ## Allows people in group wheel to run all commands

    %wheel ALL=(ALL) ALL

    join ALL=(ALL) NOPASSWD:ALL

    **注意:**join这一行不要直接放到 root 行下面,因为所有用户都属于 wheel 组,你先配置了join具有免密功能,但是程序执行到%wheel 行时,该功能又被覆盖回需要 密码。所以join要放到%wheel 这行下面。

  2. 在/opt 目录下创建文件夹,并修改所属主和所属组

    1. 在/opt 目录下创建 module、software 文件夹

      [root@hadoop100 ~]# mkdir /opt/module

      [root@hadoop100 ~]# mkdir /opt/software

    2. 修改 module、software 文件夹的所有者和所属组均为join用户

      [root@hadoop100 ~]# chown join:join /opt/module

      [root@hadoop100 ~]# chown join:join /opt/software

    3. 查看 module、software 文件夹的所有者和所属组

      [root@hadoop100 ~]# cd /opt/

      [root@hadoop100 opt]# ll

  3. 卸载虚拟机自带的 JDK

注意:如果你的虚拟机是最小化安装不需要执行这一步。

[root@hadoop100 ~]# rpm -qa | grep -i java | xargs -n1 rpm -e --nodeps

➢ rpm -qa:查询所安装的所有 rpm 软件包

➢ grep -i:忽略大小写

➢ xargs -n1:表示每次只传递一个参数

➢ rpm -e –nodeps:强制卸载软件

  1. 重启虚拟机

    [root@hadoop100 ~]# reboot

2.6.7、克隆虚拟机
  1. 利用模板机 hadoop100,克隆三台虚拟机:hadoop102 hadoop103 hadoop104

    注意:克隆时,要先关闭 hadoop100

  2. 修改克隆机 IP和主机名,以下以 hadoop102 举例说明

    [root@hadoop100 ~]# vim /etc/sysconfig/network-scripts/ifcfg-ens33

    将IP改为与克隆机hadoop后面的数字相对应

    主机名修改:

    [root@hadoop100 ~]# vim /etc/hostname

  3. 最后用xshell分别连接三台克隆机

2.6.8、在hadoop102安装JDK
  1. 先卸载JDK,之前卸载过了

  2. 用 XShell 传输工具将 JDK 导入到 opt 目录下面的 software 文件夹下面

在这里插入图片描述

  1. 在 Linux 系统下的 opt 目录中查看软件包是否导入成功

    [join@hadoop102 ~]$ ls /opt/software/

  2. 解压 JDK 到/opt/module 目录下

    [join@hadoop102 software]$ tar -zxvf jdk-8u212-linux-x64.tar.gz -C /opt/module/

  3. 配置 JDK 环境变量

    1. 新建/etc/profile.d/my_env.sh 文件

      [join@hadoop102 ~]$ sudo vim /etc/profile.d/my_env.sh

      添加如下内容

      #JAVA_HOME

      export JAVA_HOME=/opt/module/jdk1.8.0_212

      export PATH= P A T H : PATH: PATH:JAVA_HOME/bin

    2. source 一下/etc/profile 文件,让新的环境变量 PATH 生效

      [join@hadoop102 ~]$ source /etc/profile

  4. 测试 JDK 是否安装成功

    [join@hadoop102 ~]$ java -version

    如果能看到以下结果,则代表 Java 安装成功。

    java version “1.8.0_212”

2.6.9、在hadoop102上安装Hadoop
  1. 用 XShell 文件传输工具将 hadoop-3.1.3.tar.gz 导入到 opt 目录下面的 software 文件夹下面

  2. 进入到 Hadoop 安装包路径下

    [join@hadoop102 ~]$ cd /opt/software/

  3. 解压安装文件到/opt/module 下面

    [join@hadoop102 software]$ tar -zxvf hadoop-3.1.3.tar.gz -C /opt/module/

  4. 查看是否解压成功

    [join@hadoop102 software]$ ls /opt/module/ hadoop-3.1.3

  5. 将 Hadoop 添加到环境变量

    1. 获取 Hadoop 安装路径

      [join@hadoop102 hadoop-3.1.3]$ pwd

      /opt/module/hadoop-3.1.3

    2. 打开/etc/profile.d/my_env.sh 文件

      [join@hadoop102 hadoop-3.1.3]$ sudo vim /etc/profile.d/my_env.sh

      ➢ 在 my_env.sh 文件末尾添加如下内容:

      #HADOOP_HOME

      export HADOOP_HOME=/opt/module/hadoop-3.1.3

      export PATH= P A T H : PATH: PATH:HADOOP_HOME/bin

      export PATH= P A T H : PATH: PATH:HADOOP_HOME/sbin

      ➢ 保存并退出: :wq

    3. 让修改后的文件生效

      [join@hadoop102 hadoop-3.1.3]$ source /etc/profile

  6. 测试是否安装成功

    [join@hadoop102 hadoop-3.1.3]$ hadoop version Hadoop 3.1.3

    如果 Hadoop 命令不能用再重启虚拟机

2.6.10、Hadoop 目录结构
  1. 查看 Hadoop 目录结构

在这里插入图片描述

  1. 重要目录

    (1)bin 目录:存放对 Hadoop 相关服务(hdfs,yarn,mapred)进行操作的脚本

    (2)etc 目录:Hadoop 的配置文件目录,存放 Hado op 的配置文件

    (3)lib 目录:存放 Hadoop 的本地库(对数据进行压缩解压缩功能)

    (4)sbin 目录:存放启动或停止 Hadoop 相关服务的脚本

    (5)share 目录:存放 Hadoop 的依赖 jar 包、文档、和官方案例


3、Hadoop运行模式

  1. Hadoop官网:http://hadoop.apache.org/

  2. Hadoop 运行模式包括:本地模式伪分布式模式以及完全分布式模式

    本地模式:单机运行,只是用来演示一下官方案例。生产环境不用。输出路径不能存在。

    伪分布式模式:也是单机运行,但是具备 Hadoop 集群的所有功能,一台服务器模 拟一个分布式的环境。个别缺钱的公司用来测试,生产环境不用。

    完全分布式模式:多台服务器组成分布式环境。生产环境使用。

在这里插入图片描述

3.1、完全分布式运行模式(开发重点)

  1. 准备 3 台客户机(关闭防火墙、静态 IP、主机名称)

  2. 安装 JDK

  3. 配置环境变量

  4. 安装 Hadoop

  5. 配置环境变量

  6. 配置集群

  7. 单点启动

  8. 配置 ssh

  9. 群起并测试集群

3.1.1、虚拟机准备–
3.1.2、编写集群分发脚本 xsync
  • scp(secure copy)安全拷贝

    1. scp 定义:

      scp 可以实现服务器与服务器之间的数据拷贝。(from server1 to server2)

    2. 基本语法:

      scp -r p d i r / pdir/ pdir/fname u s e r @ user@ user@host: p d i r / pdir/ pdir/fname

      命令 递归 要拷贝的文件路径/名称 目的地用户@主机:目的地路径/名称

    3. 案例实操

      前提:在 hadoop102、hadoop103、hadoop104 都已经创建好的/opt/module

      /opt/software 两个目录,并且已经把这两个目录修改为 join:join

      [ join@hadoop102 ~]$ sudo chown join: join -R /opt/module

      推方式:

      • 在 hadoop102 上,将 hadoop102 中/opt/module/jdk1.8.0_212 目录拷贝到 hadoop103 上。

        [join@hadoop102 ~]$ scp -r /opt/module/jdk1.8.0_212 join@hadoop103:/opt/module

      拉方式:

      • 在 hadoop103 上,将 hadoop102 中/opt/module/hadoop-3.1.3 目录拷贝到 hadoop103 上。

        [join@hadoop103 ~]$ scp -r join@hadoop102:/opt/module/hadoop-3.1.3 /opt/module/

      指定方式:

      • 在 hadoop103 上操作,将 hadoop102 中/opt/module 目录下所有目录拷贝到 hadoop104 上。

        [join@hadoop103 opt]$ scp -r join@hadoop102:/opt/module/* join@hadoop104:/opt/module

在这里插入图片描述

  • rsync 远程同步工具

rsync 主要用于备份和镜像。具有速度快、避免复制相同内容和支持符号链接的优点。

rsync 和 scp 区别:用 rsync 做文件的复制要比 scp 的速度快,rsync 只对差异文件做更新。scp 是把所有文件都复制过去。

  1. 基本语法:

    rsync -av p d i r / pdir/ pdir/fname u s e r @ user@ user@host: p d i r / pdir/ pdir/fname

    命令 选项参数 要拷贝的文件路径/名称 目的地用户@主机:目的地路径/名称

在这里插入图片描述

  • xsync集群分发脚本

    需求:循环复制文件到所有节点的相同目录下

在这里插入图片描述

#!/bin/bash

#1. 判断参数个数
if [ $# -lt 1 ]
then
    echo Not Enough Arguement!
    exit;
fi

#2. 遍历集群所有机器
for host in hadoop102 hadoop103 hadoop104
do
    echo ====================  $host  ====================
	
#3. 遍历所有目录,挨个发送

    for file in $@
    do
        #4. 判断文件是否存在
        if [ -e $file ]
            then
                #5. 获取父目录
                pdir=$(cd -P $(dirname $file); pwd)

                #6. 获取当前文件的名称
                fname=$(basename $file)
                ssh $host "mkdir -p $pdir"
                rsync -av $pdir/$fname $host:$pdir
            else
                echo $file does not exists!
        fi
    done
done

在这里插入图片描述

3.1.3、SSH无密登录设置
  • 配置ssh

在这里插入图片描述

  • 无密钥配置

    • 免登陆原理

在这里插入图片描述

在这里插入图片描述

  • .ssh文件夹下(~/.ssh)的文件功能解释
known_hosts 记录ssh访问过计算机的公钥(public key)
id_rsa 生成的私钥
id_rsa.pub 生成的公钥
authorized_keys 存放授权过的无密登录服务器公钥
3.1.4、集群配置
  • 集群部署规划

    注意

    NameNode和SecondaryNameNode不要安装在同一台服务器。

    ResourceManager也很消耗内存,不要和NameNode、SecondaryNameNode配置在同一台机器上。

    hadoop102 hadoop103 hadoop104
    HDFS NameNode/DataNode DataNode SecondaryNameNode/DataNode
    YARN NodeManager ResourceManager/NodeManager NodeManager
  • 配置文件说明

    Hadoop配置文件分两类:默认配置文件和自定义配置文件,只有用户想修改某一默认配置值时,才需要修改自定义配置文件,更改相应属性值。

    1. 默认配置文件:

      要获取的默认文件 文件存放在Hadoop的jar包中的位置
      [core-default.xml] hadoop-common-3.1.3.jar/core-default.xml
      [hdfs-default.xml] hadoop-hdfs-3.1.3.jar/hdfs-default.xml
      [yarn-default.xml] hadoop-yarn-common-3.1.3.jar/yarn-default.xml
      [mapred-default.xml] hadoop-mapreduce-client-core-3.1.3.jar/mapred-default.xml
    2. 自定义配置文件:

      core-site.xmlhdfs-site.xmlyarn-site.xmlmapred-site.xml四个配置文件存放在$HADOOP_HOME/etc/hadoop这个路径上,用户可以根据项目需求重新进行修改配置。

    3. 配置集群:

      1. 核心配置文件

        配置core-site.xml

        [join@hadoop102 ~]$ cd $HADOOP_HOME/etc/hadoop

        [join@hadoop102 hadoop]$ vim core-site.xml

        文件内容如下:

        <?xml version="1.0" encoding="UTF-8"?>
        <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
        
        <configuration>
        
          <!-- 指定NameNode的地址 -->
          <property>
            <name>fs.defaultFS</name>
            <value>hdfs://hadoop102:8020</value>
          </property>
            
          <!-- 指定hadoop数据的存储目录 -->
          <property>
            <name>hadoop.tmp.dir</name>
            <value>/opt/module/hadoop-3.1.3/data</value>
          </property>
            
          <!-- 配置HDFS网页登录使用的静态用户为join -->
          <!-- 配置了这个可以对9870端口页面进行操作 -->
          <property>
            <name>hadoop.http.staticuser.user</name>
            <value>join</value>
          </property>
            
        </configuration>
        
      2. HDFS配置文件

        配置hdfs-site.xml

        [join@hadoop102 hadoop]$ vim hdfs-site.xml

        文件内容如下:

        <?xml version="1.0" encoding="UTF-8"?>
        <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
        
        <configuration>
            
        	<!-- nn web端访问地址-->
        	<property>
                <name>dfs.namenode.http-address</name>
                <value>hadoop102:9870</value>
            </property>
            
        	<!-- 2nn web端访问地址-->
            <property>
                <name>dfs.namenode.secondary.http-address</name>
                <value>hadoop104:9868</value>
            </property>
            
        </configuration>
        
      3. YARN配置文件

        配置yarn-site.xml

        [join@hadoop102 hadoop]$ vim yarn-site.xml

        文件内容如下:

        <?xml version="1.0" encoding="UTF-8"?>
        <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
        
        <configuration>
            
            <!-- 指定MR走shuffle -->
            <property>
                <name>yarn.nodemanager.aux-services</name>
                <value>mapreduce_shuffle</value>
            </property>
            
            <!-- 指定ResourceManager的地址-->
            <property>
                <name>yarn.resourcemanager.hostname</name>
                <value>hadoop103</value>
            </property>
        
            <!-- 环境变量的继承 -->
            <property>
                <name>yarn.nodemanager.env-whitelist</name>       <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
            </property>
            
        </configuration>
        
      4. MapReduce配置文件

        配置mapred-site.xml

        [join@hadoop102 hadoop]$ vim mapred-site.xml

        文件内容如下:

        <?xml version="1.0" encoding="UTF-8"?>
        <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
        
        <configuration>
            
        	<!-- 指定MapReduce程序运行在Yarn上 -->
            <property>
                <name>mapreduce.framework.name</name>
                <value>yarn</value>
            </property>
            
        </configuration>
        
    4. 在集群上分发配置好的Hadoop配置文件

      [join@hadoop102 hadoop]$ xsync /opt/module/hadoop-3.1.3/etc/hadoop/

    5. 去103和104上查看文件分发情况

      [join@hadoop103 ~]$ cat /opt/module/hadoop-3.1.3/etc/hadoop/core-site.xml

      [join@hadoop104 ~]$ cat /opt/module/hadoop-3.1.3/etc/hadoop/core-site.xml

3.1.5、群起集群并测试
  • 配置workers

    [join@hadoop102 hadoop]$ vim /opt/module/hadoop-3.1.3/etc/hadoop/workers

    在该文件中增加如下内容:

    hadoop102

    hadoop103

    hadoop104

    注意:该文件中添加的内容结尾不允许有空格,文件中不允许有空行。

    同步所有节点配置文件

    [join@hadoop102 hadoop]$ xsync /opt/module/hadoop-3.1.3/etc

  • 启动集群

    • 如果集群是第一次启动,需要在hadoop102节点格式化NameNode(注意:格式化NameNode,会产生新的集群id,导致NameNode和DataNode的集群id不一致,集群找不到已往数据。如果集群在运行过程中报错,需要重新格式化NameNode的话,一定要先停止namenode和datanode进程,并且要删除所有机器的data和logs目录,然后再进行格式化。)停止命令:sbin/stop-dfs.sh,删除命令:rm -r data,rm -r logs

      [join@hadoop102 hadoop-3.1.3]$ hdfs namenode -format

    • 启动HDFS

      [join@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh

    • Web端查看HDFS的NameNode

      浏览器中输入:http://hadoop102:9870

      查看HDFS上存储的数据信息

    • **在配置了ResourceManager的节点(hadoop103)**启动YARN

      [join@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

    • Web端查看YARN的ResourceManager

      浏览器中输入:http://hadoop103:8088

      查看YARN上运行的Job信息

  • 集群基本测试

    • 上传文件到集群

      [join@hadoop102 ~]$ hadoop fs -mkdir /wcinput

      [join@hadoop102 ~]$ hadoop fs -put $HADOOP_HOME/wcinput/word.txt /wcinput

      [join@hadoop102 ~]$ hadoop fs -put /opt/software/jdk-8u212-linux-x64.tar.gz /

    • 上传文件后查看文件存放在什么位置

      Ø 查看HDFS文件存储路径

      [join@hadoop102 subdir0]$ pwd

      /opt/module/hadoop-3.1.3/data/dfs/data/current/BP-1436128598-192.168.10.102-1610603650062/current/finalized/subdir0/subdir0

      Ø 查看HDFS在磁盘存储文件内容

      [join@hadoop102 subdir0]$ cat blk_1073741825

      hadoop yarn

      hadoop mapreduce

      join

      join

    • 拼接

      -rw-rw-r–. 1 join join 134217728 5月 23 16:01 blk_1073741836

      -rw-rw-r–. 1 join join 1048583 5月 23 16:01 blk_1073741836_1012.meta

      -rw-rw-r–. 1 join join 63439959 5月 23 16:01 blk_1073741837

      -rw-rw-r–. 1 join join 495635 5月 23 16:01 blk_1073741837_1013.meta

      [join@hadoop102 subdir0]$ cat blk_1073741836>>tmp.tar.gz

      [join@hadoop102 subdir0]$ cat blk_1073741837>>tmp.tar.gz

      [join@hadoop102 subdir0]$ tar -zxvf tmp.tar.gz

    • 下载

      [join@hadoop104 software]$ hadoop fs -get /jdk-8u212-linux-x64.tar.gz ./

    • 执行wordcount程序

      [join@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /wcinput /wcoutput

3.1.6、配置历史服务器

为了查看程序的历史运行情况,需要配置一下历史服务器。具体配置步骤如下:

  • 配置mapred.site.xml

    [join@hadoop102 hadoop]$ vim mapred-site.xml

    在该文件里面增加如下配置。

    <!-- 历史服务器端地址 -->
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>hadoop102:10020</value>
    </property>
    
    <!-- 历史服务器web端地址 -->
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>hadoop102:19888</value>
    </property>
    
  • 分发配置

    [join@hadoop102 hadoop]$ xsync $HADOOP_HOME/etc/hadoop/mapred-site.xml

  • 在hadoop102启动历史服务器

    [join@hadoop102 hadoop]$ mapred --daemon start historyserver

  • 查看历史服务器是否启动

    [join@hadoop102 hadoop]$ jps

  • 查看JobHistory

    http://hadoop102:19888/jobhistory

3.1.7、配置日志聚集

日志聚集概念:应用运行完成以后,将程序运行日志信息上传到HDFS系统上。

在这里插入图片描述

日志聚集功能好处:可以方便的查看到程序运行详情,方便开发调试。

注意:开启日志聚集功能,需要重新启动NodeManager 、ResourceManager和HistoryServer。

开启日志聚集功能具体步骤如下:

  • 配置yarn-site.xml

    [join@hadoop102 hadoop]$ vim yarn-site.xml

    在该文件里面增加如下配置。

    <!-- 开启日志聚集功能 -->
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>
    
    <!-- 设置日志聚集服务器地址 -->
    <property>  
        <name>yarn.log.server.url</name>  
        <value>http://hadoop102:19888/jobhistory/logs</value>
    </property>
    
    <!-- 设置日志保留时间为7天 -->
    <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>604800</value>
    </property>
    
  • 分发配置

    [join@hadoop102 hadoop]$ xsync $HADOOP_HOME/etc/hadoop/yarn-site.xml

  • 关闭NodeManager 、ResourceManager和HistoryServer

    [join@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh

    单节点关闭:[join@hadoop102 hadoop-3.1.3]$ mapred --daemon stop historyserver

  • 启动NodeManager 、ResourceManage和HistoryServer

    [join@hadoop103 ~]$ sbin/start-yarn.sh

    [join@hadoop102 ~]$ mapred --daemon start historyserver

  • 执行WordCount程序

    [join@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /wcinput /wcoutput2

  • 查看日志

    • 历史服务器地址

      http://hadoop102:19888/jobhistory

    • 历史任务列表
      在这里插入图片描述

    • 查看任务运行日志

在这里插入图片描述

  • 运行日志详情

在这里插入图片描述

3.1.8、集群启动/停止方式总结
  • 各个模块分开启动停止(配置ssh是前提)常用

    • 整体启动/停止HDFS

      start-dfs.sh/stop-dfs.sh

    • 整体启动/停止YARN

      start-yarn.sh/stop-yarn.sh

  • 各个服务组件逐一启动停止

    • 分别启动/停止HDFS组件

      ​ hdfs --daemon start/stop namenode/datanode/secondarynamenode

    • 启动/停止YARN

      yarn --daemon start/stop resourcemanager/nodemanager

  • 杀死某个节点

    kill -9 节点前面的数字

3.1.9、编写Hadoop集群常用脚本
  • Hadoop集群启停脚本(包含HDFS,Yarn,Historyserver):myhadoop.sh

    [join@hadoop102 ~]$ cd /home/join/bin

    [join@hadoop102 bin]$ vim myhadoop.sh

    • Ø 输入如下内容

      #!/bin/bash
      
      if [ $# -lt 1 ]
      then
          echo "No Args Input..."
          exit ;
      fi
      
      case $1 in
      "start")
              echo " =================== 启动 hadoop集群 ==================="
      
              echo " --------------- 启动 hdfs ---------------"
              ssh hadoop102 "/opt/module/hadoop-3.1.3/sbin/start-dfs.sh"
              echo " --------------- 启动 yarn ---------------"
      		        ssh hadoop103 "/opt/module/hadoop-3.1.3/sbin/start-yarn.sh"
              echo " --------------- 启动 historyserver ---------------"
              ssh hadoop102 "/opt/module/hadoop-3.1.3/bin/mapred --daemon start historyserver"
      ;;
      "stop")
              echo " =================== 关闭 hadoop集群 ==================="
      
              echo " --------------- 关闭 historyserver ---------------"
              ssh hadoop102 "/opt/module/hadoop-3.1.3/bin/mapred --daemon stop historyserver"
              echo " --------------- 关闭 yarn ---------------"
              ssh hadoop103 "/opt/module/hadoop-3.1.3/sbin/stop-yarn.sh"
              echo " --------------- 关闭 hdfs ---------------"
              ssh hadoop102 "/opt/module/hadoop-3.1.3/sbin/stop-dfs.sh"
      ;;
      *)
          echo "Input Args Error..."
      ;;
      esac
      
    • Ø 保存后退出,然后赋予脚本执行权限

      [join@hadoop102 bin]$ chmod +x myhadoop.sh

  • 查看三台服务器Jps进程脚本:jpsall

    [join@hadoop102 ~]$ cd /home/join/bin

    [join@hadoop102 bin]$ vim jpsall

    • Ø 输入如下内容

      #!/bin/bash
      
      for host in hadoop102 hadoop103 hadoop104
      do
              echo =============== $host ===============
              ssh $host jps 
      done
      
    • Ø 保存后退出,然后赋予脚本执行权限

      [join@hadoop102 bin]$ chmod +x jpsall

  • 分发/home/join/bin目录,保证自定义脚本在三台机器上都可以使用

    [join@hadoop102 ~]$ xsync /home/join/bin/

3.1.10、常用端口号和配置文件(两个面试题)
端口名称 Hadoop2.x Hadoop3.x
NameNode内部通信端口 8020 / 9000 8020 / 9000/9820
NameNode 客户端端口 50070 9870
MapReduce查看执行任务端口 8088 8088
历史服务器通信端口 19888 19888

常用的配置文件:

3.x core-site.xml hdfs-site.xml yarn-site.xml mapred-site.xml workers
2.x core-site.xml hdfs-site.xml yarn-site.xml mapred-site.xml slaves


4、常见错误

1)防火墙没关闭、或者没有启动YARN

INFO client.RMProxy: Connecting to ResourceManager at hadoop108/192.168.10.108:8032

2)主机名称配置错误

3)IP地址配置错误

4)ssh没有配置好

5)root用户和join两个用户启动集群不统一,一般使用非root用户启动集群

6)配置文件修改不细心

7)不识别主机名称

java.net.UnknownHostException: hadoop102: hadoop102

​ at java.net.InetAddress.getLocalHost(InetAddress.java:1475)

​ at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:146)

​ at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1290)

​ at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1287)

​ at java.security.AccessController.doPrivileged(Native Method)

at javax.security.auth.Subject.doAs(Subject.java:415)

解决办法:

(1)在/etc/hosts文件中添加192.168.10.102 hadoop102

(2)主机名称不要起hadoop hadoop000等特殊名称

8)DataNode和NameNode进程同时只能工作一个。

在这里插入图片描述

先停止所有节点,再删除102,103,104中的data、logs目录,然后格式化再启动节点

9)执行命令不生效,粘贴Word中命令时,遇到-和长–没区分开。导致命令失效

解决办法:尽量不要粘贴Word中代码。

10)jps发现进程已经没有,但是重新启动集群,提示进程已经开启。

原因是在Linux的根目录下/tmp目录中存在启动的进程临时文件,将集群相关进程删除掉,再重新启动集群。

11)jps不生效

原因:全局变量hadoop java没有生效。解决办法:需要source /etc/profile文件。

12)8088端口连接不上

[join@hadoop102 桌面]$ cat /etc/hosts

注释掉如下代码

#127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

#::1 hadoop102


HDFS

第1章、HDFS概述

1.1、 HDFS产出背景及定义

1)HDFS产生背景

随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。

2)HDFS定义

HDFS(Hadoop Distributed File System),它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。

HDFS的使用场景:适合一次写入,多次读出的场景。一个文件经过创建、写入和关闭之后就不需要改变。

1.2、HDFS优缺点

优点:
在这里插入图片描述

缺点:

在这里插入图片描述

1.3、HDFS组成架构

在这里插入图片描述

在这里插入图片描述

1.4、HDFS文件块大小(面试重点)

在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Am56zW49-1635128212436)(G:\桌面\截图\QQ截图在这里插入图片描述
)]


第2章、HDFS的Shell操作(开发重点)

2.1、基本语法

hadoop fs 具体命令 OR hdfs dfs 具体命令

两个是完全相同的。

2.2、命令大全

[join@hadoop102 hadoop-3.1.3]$ bin/hadoop fs

[-appendToFile … ]

​ [-cat [-ignoreCrc] …]

​ [-chgrp [-R] GROUP PATH…]

​ [-chmod [-R] <MODE[,MODE]… | OCTALMODE> PATH…]

​ [-chown [-R] [OWNER][:[GROUP]] PATH…]

​ [-copyFromLocal [-f] [-p] … ]

​ [-copyToLocal [-p] [-ignoreCrc] [-crc] … ]

​ [-count [-q] …]

​ [-cp [-f] [-p] … ]

​ [-df [-h] [ …]]

​ [-du [-s] [-h] …]

​ [-get [-p] [-ignoreCrc] [-crc] … ]

​ [-getmerge [-nl] ]

​ [-help [cmd …]]

​ [-ls [-d] [-h] [-R] [ …]]

​ [-mkdir [-p] …]

​ [-moveFromLocal … ]

​ [-moveToLocal ]

​ [-mv … ]

​ [-put [-f] [-p] … ]

​ [-rm [-f] [-r|-R] [-skipTrash] …]

​ [-rmdir [–ignore-fail-on-non-empty]

…]

<acl_spec> ]]

​ [-setrep [-R] [-w] …]

​ [-stat [format] …]

​ [-tail [-f] ]

​ [-test -[defsz] ]

​ [-text [-ignoreCrc] …]

2.3、常用命令操作

2.3.1、准备工作

1)启动Hadoop集群(方便后续的测试)

[join@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh

[join@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

2)-help:输出这个命令参数

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -help rm

3)创建/sanguo文件夹

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -mkdir /sanguo

2.3.2、上传

1)**-moveFromLocal:**从本地剪切粘贴到HDFS

[join@hadoop102 hadoop-3.1.3]$ vim shuguo.txt

输入:

shuguo

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -moveFromLocal ./shuguo.txt /sanguo

2)**-copyFromLocal:**从本地文件系统中拷贝文件到HDFS路径去

[join@hadoop102 hadoop-3.1.3]$ vim weiguo.txt

输入:

weiguo

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -copyFromLocal weiguo.txt /sanguo

3)**-put:**等同于copyFromLocal,生产环境更习惯用put

[join@hadoop102 hadoop-3.1.3]$ vim wuguo.txt

输入:

wuguo

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -put ./wuguo.txt /sanguo

4)**-appendToFile:**追加一个文件到已经存在的文件末尾

[join@hadoop102 hadoop-3.1.3]$ vim liubei.txt

输入:

liubei

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -appendToFile liubei.txt /sanguo/shuguo.txt

2.3.3、下载

1)**-copyToLocal:**从HDFS拷贝到本地

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -copyToLocal /sanguo/shuguo.txt ./

2)**-get:**等同于copyToLocal,生产环境更习惯用get

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -get /sanguo/shuguo.txt ./shuguo2.txt

2.3.4、HDFS直接操作

1)-ls: 显示目录信息

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -ls /sanguo

2)**-cat:**显示文件内容

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -cat /sanguo/shuguo.txt

3)**-chgrp、-chmod、-chown:**Linux文件系统中的用法一样,修改文件所属权限

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -chmod 666 /sanguo/shuguo.txt

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -chown join:join /sanguo/shuguo.txt

4)**-mkdir:**创建路径

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -mkdir /jinguo

5)**-cp:**从HDFS的一个路径拷贝到HDFS的另一个路径

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -cp /sanguo/shuguo.txt /jinguo

6)**-mv:**在HDFS目录中移动文件

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -mv /sanguo/wuguo.txt /jinguo

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -mv /sanguo/weiguo.txt /jinguo

7)**-tail:**显示一个文件的末尾1kb的数据

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -tail /jinguo/shuguo.txt

8)**-rm:**删除文件或文件夹

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -rm /sanguo/shuguo.txt

9)**-rm -r:**递归删除目录及目录里面内容

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -rm -r /sanguo

10)**-du:**统计文件夹的大小信息

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -du -s -h /jinguo

输出:31 93 /jinguo

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -du -h /jinguo

输出:

16 48 /jinguo/shuguo.txt
8 24 /jinguo/weiguo.txt
7 21 /jinguo/wuguo.txt

说明:31表示文件大小;93表示31*3个副本;/jinguo表示查看的目录
在这里插入图片描述

11)**-setrep:**设置HDFS中文件的副本数量

[join@hadoop102 hadoop-3.1.3]$ hadoop fs -setrep 10 /jinguo/shuguo.txt

在这里插入图片描述

这里设置的副本数只是记录在NameNode的元数据中,是否真的会有这么多副本,还得看DataNode的数量。因为目前只有3台设备,最多也就3个副本,只有节点数的增加到10台时,副本数才能达到10。


第3章、HDFS的API操作

3.1、客户端环境准备

1)找到资料包路径下的Windows依赖文件夹,拷贝hadoop-3.1.0到非中文路径(我的在F:\HadoopWindownsYilai\hadoop-3.1.0)

2)配置HADOOP_HOME环境变量

在这里插入图片描述

3)配置Path环境变量。

注意:如果环境变量不起作用,可以重启电脑试试。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PsPA8dxD-1635128212438)(G:\桌面\截图\QQ截图在这里插入图片描述
)]

验证Hadoop环境变量是否正常。双击winutils.exe,如果报如下错误。说明缺少微软运行库(正版系统往往有这个问题)。再资料包里面有对应的微软运行库安装包双击安装即可。
在这里插入图片描述

4)在IDEA中创建一个Maven工程HdfsClient,并导入相应的依赖坐标+日志添加。

<dependencies>    <dependency>        <groupId>org.apache.hadoop</groupId>        <artifactId>hadoop-client</artifactId>        <version>3.1.3</version>    </dependency>    <dependency>        <groupId>junit</groupId>        <artifactId>junit</artifactId>        <version>4.12</version>    </dependency>    <dependency>        <groupId>org.slf4j</groupId>        <artifactId>slf4j-log4j12</artifactId>        <version>1.7.30</version>    </dependency></dependencies>

在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入

log4j.rootLogger=INFO, stdout  log4j.appender.stdout=org.apache.log4j.ConsoleAppender  log4j.appender.stdout.layout=org.apache.log4j.PatternLayout  log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n  log4j.appender.logfile=org.apache.log4j.FileAppender  log4j.appender.logfile.File=target/spring.log  log4j.appender.logfile.layout=org.apache.log4j.PatternLayout  log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

5)创建包名:com.join.hdfs

6)创建HdfsClient类

package com.join.hdfs;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.junit.Test;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

/**
 * 客户端代码常用套路
 * 1.获取一个客户端对象
 * 2.执行相关的操作命令
 * 3.关闭资源
 * HDFS  zookeeper
 */

public class HdfsClient {
   
   
    @Test
    public void testmkdir() throws URISyntaxException, IOException, InterruptedException {
   
   

        // 连接的集群nn地址
        URI uri = new URI("hdfs://hadoop102:8020");
        //创建一个配置文件
        Configuration configuration = new Configuration();

        //用户
        String user = "join";

        //1 获取到了客户端对象
        FileSystem fs = FileSystem.get(uri, configuration, user);

        //在HDFS上创建一个目录
        //2 创建一个文件夹
        fs.mkdirs(new Path("/xiyou/huaguoshan/"));

        //3 关闭资源
        fs.close();
    }
}

7)执行程序

客户端去操作HDFS时,是有一个用户身份的。默认情况下,HDFS客户端API会从采用Windows默认用户访问HDFS,会报权限异常错误。所以在访问HDFS时,一定要配置用户。

org.apache.hadoop.security.AccessControlException: Permission denied: user=Lenovo, access=WRITE, inode="/xiyou":join:supergroup:drwxr-xr-x

优化后的执行:

package com.join.hdfs;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.junit.After;import org.junit.Before;import org.junit.Test;import java.io.IOException;import java.net.URI;import java.net.URISyntaxException;/** * 客户端代码常用套路 * 1.获取一个客户端对象 * 2.执行相关的操作命令 * 3.关闭资源 * HDFS  zookeeper */public class HdfsClient {
   
       private FileSystem fs;    @Before    public void init() throws URISyntaxException, IOException, InterruptedException {
   
           // 连接的集群nn地址        URI uri = new URI("hdfs://hadoop102:8020");        //创建一个配置文件        Configuration configuration = new Configuration();        //用户        String user = "join";        //1 获取到了客户端对象        fs = FileSystem.get(uri, configuration, user);    }    @After    public void close() throws IOException {        //3 关闭资源        fs.close();    }    //在HDFS上创建一个目录    @Test    public void testmkdir() throws URISyntaxException, IOException, InterruptedException {        //2 创建一个文件夹        fs.mkdirs(new Path("/xiyou/huaguoshan/"));    }}

3.2、HDFS的API操作

3.2.1、HDFS的文件上传(副本参数优先级)
package com.join.hdfs;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

/**
 * 客户端代码常用套路
 * 1.获取一个客户端对象
 * 2.执行相关的操作命令
 * 3.关闭资源
 * HDFS  zookeeper
 */

public class HdfsClient {
   
   

    private FileSystem fs;
    @Before
    public void init() throws URISyntaxException, IOException, InterruptedException {
   
   

        // 连接的集群nn地址
        URI uri = new URI("hdfs://hadoop102:8020");
        //创建一个配置文件
        Configuration configuration = new Configuration();

        //用户
        String user = "join";

        //1 获取到了客户端对象
        fs = FileSystem.get(uri, configuration, user);

    }
    @After
    public void close() throws IOException {
   
   

        //3 关闭资源
        fs.close();
    }

    //上传
     /**
     * 参数优先级
     * 代码里面的配置>在项目资源目录下的配置文件>hdfs-site.xml>hdfs-default.xml
     *
     */
    @Test
    public void testPut() throws IOException {
   
   
        // 参数解读:参数一:表示删除原数据;参数二:表示是否允许覆盖;参数三:原数据路径;参数四:目的地路径
        fs.copyFromLocalFile(true, true, new Path("F:\\sunwukong.txt"), new Path("hdfs://hadoop102/xiyou/huaguoshan"));

    }
}

将hdfs-site.xml拷贝到项目的resources资源目录下

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>
	<property>
		<name>dfs.replication</name>
         <value>1</value>
	</property>
</configuration>
3.2.2、HDFS文件下载
package com.join.hdfs;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.yarn.webapp.hamlet2.Hamlet;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

/**
 * 客户端代码常用套路
 * 1.获取一个客户端对象
 * 2.执行相关的操作命令
 * 3.关闭资源
 * HDFS  zookeeper
 */

public class HdfsClient {
   
   

    private FileSystem fs;
    @Before
    public void init() throws URISyntaxException, IOException, InterruptedException {
   
   

        // 连接的集群nn地址
        URI uri = new URI("hdfs://hadoop102:8020");

        //创建一个配置文件
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值