条件约束下的最优化问题--拉格朗日与KKT条件

本文主要介绍条件约束下的最优化问题,包括等式约束优化问题的拉格朗日乘数定理和不等式约束优化问题的KKT条件。通过简单例子展示了如何运用拉格朗日函数求解最优解,还将结果推广到多个约束等式与不等式的情况,并对具体例子进行分类讨论得出最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

条件约束下的最优化问题–拉格朗日乘数法与KKT条件

等式约束优化问题 (拉格朗日乘数定理)

min ⁡ x f ( x ) s . t . g ( x ) = 0 \min_x f(x) \\ s.t. \quad g(x) = 0 xminf(x)s.t.g(x)=0
为方便分析,假设 f f f g g g 是连续可导函数;构造Lagrange函数
L ( x , λ ) = f ( x ) + λ g ( x ) L(x,\lambda) = f(x) + \lambda g(x) L(x,λ)=f(x)+λg(x)
计算 L L L x x x λ \lambda λ 的偏导数并设为零,可得最优解的必要条件:
d L d x = f ′ ( x ) + λ g ′ ( x ) = 0 d L d λ = g ( x ) = 0 \frac{dL}{dx} = f'(x) + \lambda g'(x) = 0 \\ \frac{dL}{d\lambda} = g(x) = 0 \\ dxdL=f(x)+λg(x)=0dλdL=g(x)=0

简单的例子

求此方程的最小值:
f ( x , y ) = x 2 y f(x,y) = x^2 y f(x,y)=x2y
同时未知数满足约束
x 2 + y 2 = 1 g ( x , y ) = x 2 + y 2 − 1 = 0 x^2 + y^2 = 1 \\ g(x,y) = x^2 + y^2 - 1 = 0 x2+y2=1g(x,y)=x2+y21=0
构造拉格朗日函数
L = f ( x , y ) + λ g ( x , y ) = x 2 y + λ ( x 2 + y 2 − 1 ) { ∂ L ∂ x = 2 x y + 2 λ x = 0 ∂ L ∂ y = x 2 + 2 λ y = 0 ∂ L ∂ λ = x 2 + y 2 − 1 = 0 ⇒ { x = − 2 3 , x = 2 3 y = − 1 3 , y = − 1 3 λ = 1 3 , λ = 1 3 L = f(x,y) + \lambda g(x,y) = x^2 y + \lambda(x^2 + y^2 - 1) \\ \begin{cases} \frac{\partial{L}}{\partial{x}} = 2xy + 2\lambda x = 0 \\ \frac{\partial{L}}{\partial{y}} = x^2 + 2\lambda y = 0 \\ \frac{\partial{L}}{\partial{\lambda}} = x^2 + y^2 - 1 = 0 \\ \end{cases}\Rightarrow \begin{cases} x = -\sqrt{\frac{2}{3}} , x=\sqrt{\frac{2}{3}} \\ y = -\sqrt{\frac{1}{3}} , y=-\sqrt{\frac{1}{3}} \\ \lambda = \sqrt{\frac{1}{3}} , \lambda=\sqrt{\frac{1}{3}} \\ \end{cases} L=f(x,y)+λg(x,y)=x2y+λ(x2+y21) xL=2xy+2λx=0yL=x2+2λy=0λL=x2+y21=0 x=32 ,x=32 y=31 ,y=31 λ=31 ,λ=31

不等式约束优化问题 (KKT条件)

min ⁡ x f ( x ) s . t . g ( x ) ≤ 0 \min_x f(x) \\ s.t. \quad g(x) \leq 0 xminf(x)s.t.g(x)0
约束不等式 g ( x ) ≤ 0 g(x) \leq 0 g(x)0称为原始可行性(primal feasibility),据此我们定义可行域(feasible region) K = { x ∈ R n ∣ g ( x ) ≤ 0 } K=\{x\in R^n|g(x)\leq 0\} K={xRng(x)0} 。假设 x ∗ x^* x为满足约束条件的最佳解,分开两种情况讨论:

  1. g ( x ) < 0 g(x) < 0 g(x)<0最佳解位于 K K K的内部,称为内部解(interior solution),这时约束条件是无效的(inactive);
  2. g ( x ) = 0 g(x) = 0 g(x)=0最佳解落在 K K K的边界,称为边界解(boundary solution),此时约束条件是有效的(active)。

这两种情况的最佳解具有不同的必要条件。

  1. 内部解:在约束条件无效的情形下, g ( x ) g(x) g(x)不起作用,约束优化问题退化为无约束优化问题,因此驻点 x ∗ x^* x满足 f ′ = 0 且 λ = 0 f' = 0且\lambda = 0 f=0λ=0(因为 g ( x ) < 0 且 λ ≠ 0 g(x) < 0且\lambda \neq 0 g(x)<0λ=0,那么 L L L的最优就不是 f f f的最优)
  2. 边界解:在约束条件有效的情形下,约束不等式变成等式 g ( x ) = 0 g(x) = 0 g(x)=0,这与前述Lagrange乘数法的情况相同。我们可以证明驻点 x ∗ x^* x发生于 ▽ f ∈ s p a n { ▽ g } ( ▽ g 张成的空间 ) \triangledown f\in span\{\triangledown g\}(\triangledown g张成的空间) fspan{g}(g张成的空间);换句话说,存在 λ \lambda λ 使得 ▽ f = − λ ▽ g \triangledown f = -\lambda \triangledown g f=λg ,但这里 的正负号是有其意义的。因为我们希望最小化 f f f,梯度 ▽ f \triangledown f f (函数 f f f 在点 x x x 的最陡上升方向)应该指向可行域 K K K 的内部(因为你的最优解最小值是在边界取得的),但 ▽ g \triangledown g g 指向 K K K的外部(即 g ( x ) > 0 g(x) > 0 g(x)>0的区域,因为你的约束是小于等于0),因此 ,称为对偶可行性(dual feasibility)。

因此,不论是内部解或边界解, λ ▽ g = 0 \lambda\triangledown g=0 λg=0 恒成立,称为互补松弛性(complementary slackness)。整合上述两种情况,最佳解的必要条件包括Lagrangian函数 L ( x , λ ) L(x,\lambda) L(x,λ) 的定常方程式、原始可行性、对偶可行性,以及互补松弛性:
min ⁡ x f ( x ) s . t . g ( x ) ≤ 0 L = f ( x ) + λ g ( x ) { ∂ L ∂ x = ▽ f + λ ▽ g = 0 g ( x ) ≤ 0 λ ≥ 0 λ g ( x ) = 0 \min_x f(x) \\ s.t. \quad g(x) \leq 0 \\ L = f(x) + \lambda g(x) \\ \begin{cases} \frac{\partial{L}}{\partial{x}} = \triangledown f + \lambda \triangledown g = 0 \\ g(x) \leq 0 \\ \lambda \geq 0 \\ \lambda g(x) = 0 \end{cases} xminf(x)s.t.g(x)0L=f(x)+λg(x) xL=f+λg=0g(x)0λ0λg(x)=0
这些条件合称为Karush-Kuhn-Tucker (KKT)条件。如果我们要最大化 f ( x ) f(x) f(x) 且受限于 g ( x ) ≤ 0 g(x) \leq 0 g(x)0 ,那么对偶可行性要改成 λ ≤ 0 \lambda \leq 0 λ0

上面结果可推广至多个约束等式与约束不等式的情况。

考虑标准约束优化问题(或称非线性规划):
min ⁡ x f ( x ) s . t . g j ( x ) = 0 , j = 1 , … , m h k ( x ) ≤ 0 , k = 1 , … , p \min_x f(x) \\ \begin{aligned} s.t. \quad & g_j(x) = 0, j=1,\dots,m \\ & h_k(x) \leq 0, k=1,\dots,p \\ \end{aligned} xminf(x)s.t.gj(x)=0,j=1,,mhk(x)0,k=1,,p
构造Lagrangian函数
L ( x , { λ j } , { μ k } ) = f ( x ) + ∑ j = 1 m λ j g j ( x ) + ∑ k = 1 p μ k h k ( x ) L(x,\{\lambda_j\},\{\mu_k\}) = f(x) + \sum_{j=1}^m\lambda_jg_j(x) + \sum_{k=1}^p \mu_kh_k(x) L(x,{λj},{μk})=f(x)+j=1mλjgj(x)+k=1pμkhk(x)
KKT条件为:
{ ▽ x L = 0 g j ( x ) = 0 , j = 1 , … , m h k ( x ) ≤ 0 μ k ≥ 0 μ k h k ( x ) = 0 , k = 1 , … , p \begin{cases} \triangledown_x L = 0 \\ g_j(x) = 0, j=1,\dots,m \\ h_k(x) \leq 0 \\ \mu_k \geq 0 \\ \mu_k h_k(x) = 0, k=1,\dots,p \\ \end{cases} xL=0gj(x)=0,j=1,,mhk(x)0μk0μkhk(x)=0,k=1,,p

简单的例子

min ⁡ x 1 2 + x 2 2 s . t . x 1 + x 2 = 1 x 2 ≤ a \min x_1^2 + x_2^2 \\ \begin{aligned} s.t. \quad & x_1 + x_2 = 1 \\ & x_2 \leq a \end{aligned} minx12+x22s.t.x1+x2=1x2a
构造拉格朗日函数
L = x 1 2 + x 2 2 + λ ( 1 − x 1 − x 2 ) + μ ( x 2 − a ) L = x_1^2 + x_2^2 + \lambda(1-x_1-x_2) + \mu(x_2-a) L=x12+x22+λ(1x1x2)+μ(x2a)
利用KKT条件
{ ∂ L ∂ x i = 0 , i = 1 , 2 x 1 + x 2 = 1 x 2 − a ≤ 0 μ ≥ 0 μ ( x 2 − a ) = 0 ⇒ { x 1 = μ 4 + 1 2 x 2 = − μ 4 + 1 2 − μ 4 + 1 2 ≤ a \begin{cases} \frac{\partial{L}}{\partial{x_i}} = 0,i=1,2 \\ x_1 + x_2 = 1 \\ x_2-a \leq 0 \\ \mu \geq 0 \\ \mu(x_2-a) = 0 \\ \end{cases} \Rightarrow \begin{cases} x_1 = \frac{\mu}{4} + \frac{1}{2} \\ x_2 = -\frac{\mu}{4} + \frac{1}{2} \\ -\frac{\mu}{4} + \frac{1}{2} \leq a \\ \end{cases} xiL=0,i=1,2x1+x2=1x2a0μ0μ(x2a)=0 x1=4μ+21x2=4μ+214μ+21a
a a a分类讨论

  • a ≥ 1 2 a\geq\frac{1}{2} a21时, μ = 0 ⇒ x 2 − a < 0 \mu=0\Rightarrow x_2-a < 0 μ=0x2a<0不等式无效, x 1 ∗ = x 2 ∗ = 1 2 , f m i n ( x ) = 1 2 x_1^*=x_2^*=\frac{1}{2},f_{min}(x)=\frac{1}{2} x1=x2=21,fmin(x)=21
  • a < 1 2 a<\frac{1}{2} a<21时, 约束不等式有效, x 2 ∗ = a , x 1 ∗ = 1 − a , f m i n ( x ) = ( 1 − a ) 2 + a 2 x_2^*=a,x_1^*=1-a,f_{min}(x)=(1-a)^2+a^2 x2=a,x1=1a,fmin(x)=(1a)2+a2

本文参考-- 不等式约束的优化问题 https://zhuanlan.zhihu.com/p/146837325

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PD我是你的真爱粉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值