Pytorch笔记08 DataLoader的使用

8.1 DataLoader的理解(4.10)

  同样可以从Pytorch官网官方文档得到解释。

import torchvision.datasets
from torch.utils.data import DataLoader

# 准备的测试集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(test_data, batch_size=4, shuffle=True, num_workers=0, drop_last=False)
# 每次取的数量为4;True表示每一轮都重新排序;使用多少个子进程来加载数据,0表示使用主进程;是否舍去不能被4整除而余下的数据,False表示保留
# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)    # 显示图像的类型以及分辨率
print(target)

for data in test_loader:
    imgs, targets = data
    print(imgs.shape)
    print(targets)

  运行后


  # “4"是图片数量;由于在 DataLoader 中未设置"sampler”,默认随机采样
  直观理解:将图片信息和类型都各自打包


8.2 drop_last的使用

  使用Tensorboard进行展示

import torchvision.datasets
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 准备的测试集
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)
# 每次取的数量为4;True表示每一轮都重新排序;使用多少个子进程来加载数据,0表示使用主进程;是否舍去不能被4整除而余下的数据,False表示保留
# 测试数据集中第一张图片及target
img, target = test_data[0]
print(img.shape)    # 显示图像的类型以及分辨率
print(target)

writer = SummaryWriter("dataloader")
step = 0
for data in test_loader:
    imgs, targets = data
    # print(imgs.shape)
    # print(targets)
    writer.add_images("test_data", imgs, step)    # add batched image data to summary
    step = step + 1

writer.close()

  运行后



  前面都是8×8张图片,而最后一步则是2×8张。
  将"drop_last"设置为"True"后再次运行


  可见此时最后一步也是8×8

8.3 shuffle的使用

  更改15-23行代码

writer = SummaryWriter("dataloader")
for epoch in range(2):
    step = 0
    for data in test_loader:
        imgs, targets = data
        # print(imgs.shape)
        # print(targets)
        writer.add_images("Epoch: {}".format(epoch), imgs, step)    # add batched image data to summary
        step = step + 1

  当"shuffle=True"时运行



  可见两轮中相同步数时选取的图片顺序不同。
  而当"shuffle=False"时再次运行,则两轮中相同步数时选取的图片顺序相同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值