Pytorch笔记22 完整的模型验证套路

文章展示了如何利用训练好的卷积神经网络(CNN)模型avlon_0.pth对一张小狗图片进行分类。通过加载模型,应用预处理步骤,然后在测试模式下运行模型,预测结果显示图片被分类为类型5,对应于CIFAR10数据集中的dog类别。尽管模型可能由于只训练了一轮而存在预测误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

22.1 验证过程

  利用已训练好的模型,提供输入,查看输出。

22.1.1 代码实现

  选择验证笔记 21.1.2 中训练出的第一个模型"avlon_0.pth";
  首先选择一张图片,这里选择了一张小狗的图片"dog.png"


  具体代码

import numpy as np
import torch
import torchvision.transforms
from PIL import Image
from torch import nn

image_path = "../imgs/dog.png"
image = Image.open(image_path)
print(image)
# 查看通道数,否则调用.convert('RGB')
# image = np.array(image)
# print(image.shape)
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32, 32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)


class Avlon(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64)
        )

    def forward(self, x):
        x = self.model(x)
        return x


# 1.若在 CPU 上运行 GPU 模型,需要将 GPU 模型映射到 CPU 上
# model = torch.load("avlon_0_gpu.pth", map_location=torch.device('cpu'))
model = torch.load("avlon_0.pth")
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
model.eval()    # 测试模式
with torch.no_grad():    # 减少运行内存
    image = image.cuda()    # 2."avlon_0.pth"是GPU上训练出来的,故权值在GPU上,输入也需要在GPU上,否则报错
    output = model(image)
print(output)
print(output.argmax(1))    # 返回最大的预测值的列索引值

  运行后,预测结果:图片类型为5

22.1.2 结果验证

  查看原始数据集"CIFAR10"中图片类型5的名称。
  对笔记 21.1.2 代码第12行进行断点操作


  可见图片类型5为"dog",该模型得到的预测结果正确。
  # 大概率预测错误,因为选择的是只训练了1轮的模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值