一个能够用自然语言描述任意实验并预测人类行为的计算模型:Llama-3.1-Centaur-70B

一、研究背景

认知科学长期追求“统一认知理论”,但目前的计算模型大多只能解决单一领域问题。作者指出,若欲全面理解人类心智,必须从“领域专用”迈向“通用领域”。为此,他们提出构建一个能够用自然语言描述任意实验并预测人类行为的计算模型——Centaur。

二、数据集:Psych-101

研究团队构建了迄今最大规模的多领域行为数据集 Psych-101:

  • 覆盖 160 项心理学实验

  • 60,092 名被试

  • 1,068 万余次试次选择

  • 2.5 亿余文本标记
    实验领域包括多臂老虎机、决策、记忆、监督学习、马尔可夫决策过程等。所有实验均以自然语言形式逐试次转录,保证统一格式与可扩展性。

三、模型:Centaur

Centaur 以 Llama 3.1 70B 为基底,通过 QLoRA(量化低秩适配)微调:

  • 仅新增 0.15% 的可训练参数

  • 训练 1 个 epoch,约 5 天完成

  • 训练目标仅拟合人类反应 token,其余 token 被掩码
    小型版本 Minitaur(8B)亦被训练,用于轻量级原型验证。

四、行为预测能力

  1. 对训练集内未见被试:Centaur 的负对数似然平均优于 Llama 基底模型及 14 个领域专用认知模型。

  2. 开放式模拟:在 horizon task、two-step task、社会预测游戏三类实验中,Centaur 生成的行为分布与人类无显著差异,且能区分人类与人工代理策略。

  3. 响应时间预测:Centaur 导出的响应熵可解释 87% 的 RT 方差,优于基底模型与认知模型。

五、跨分布泛化能力

作者设计了三种严格测试:

  • 改变封面故事(魔法飞毯 vs 太空船):Centaur 仍能准确预测。

  • 改变任务结构(三臂老虎机 Maggie’s farm):Centaur 显著优于领域模型。

  • 全新领域(LSAT 逻辑推理):Centaur 在无相关训练数据情况下依然表现良好。
    额外六项完全陌生的实验(道德决策、经济博弈等)亦验证了 Centaur 的稳健性。

六、与人类神经活动对齐

尽管未显式训练神经数据,Centaur 的内部表征在以下任务中更接近人脑 fMRI:

  • two-step 任务全脑预测:Centaur 在各层均优于 Llama。

  • 句子阅读任务语言网络预测:层 20 相关性最高,整体提升显著。
    结果说明大规模行为微调可间接促进模型与人脑神经表征的对齐。

七、模型驱动的科学发现案例

作者示范如何借助 Psych-101 与 Centaur 迭代改进认知模型:

  1. 用 DeepSeek-R1 解析多属性决策实验的人类策略,提出“两步启发式”新模型。

  2. 以 Centaur 为参考,用“科学遗憾最小化”找出未被解释的数据点。

  3. 将严格切换规则改为加权组合,得到与 Centaur 拟合度相当且可解释的最终模型。
    该流程可推广至其他实验范式,实现自动化认知科学研究。

八、未来展望

  • 利用稀疏自编码器、注意力图等技术深入剖析 Centaur 内部表征,生成可验证的认知假设。

  • 以 Psych-101 为基础,从头训练不同架构模型,探索人类信息处理的最优结构。

  • 持续扩展 Psych-101,纳入发展心理学、跨文化数据及个体差异常模态信息,最终形成标准化、可复用的心理学基准平台。

九、核心技术汇总表

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Open-source-AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值