图像物体的边界(深度优先搜索 (DFS)—Java&Python&C++&JS实现)

该博客介绍了如何解决华为OD在线测试中关于图像物体边界检测的问题,利用深度优先搜索(DFS)算法,分别用Python、Java、C/C++和JavaScript进行实现。博主详细解释了算法思路,包括输入读取、边界检测、计数调整,并提供了各语言的代码解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 题目

给定一个二维数组M行N列,二维数组里的数字代表图片的像素,为了简化问题,仅包含像素1和5两种像素,每种像素代表一个物体,2个物体相邻的格子为边界,求像素1代表的物体的边界个数。
像素1代表的物体的边界指与像素5相邻的像素1的格子,边界相邻的属于同一个边界,相邻需要考虑8个方向(上,下,左,右,左上,左下,右上,右下)。

其他约束:

地图规格约束为:

0<M<100

0<N<100

1)如下图,与像素5的格子相邻的像素1的格子(0,0)、(0,1)、(0,2)、(1,0)、(1,2)、(2,0)、(2,1)、(2,2)、(4,4)、(4,5)、(5,4)为边界,另(0,0)、(0,1)、(0,2)、(1,0)、(1,2)、(2,0)、(2,1)、(2,2)相邻,为1个边界,(4,4)、(4,5)、(5,4)相邻,为1个边界,所以下图边界个数为2。

2)如下图,与像素5的格子相邻的像素1的格子(0,0)、(0,1)、(0,2)、(1,0)、(1,2)、(2,0)、(2,1)、(2,2)、(3,3)、(3,4)、(3,5)、(4,3)、(4,5)、(5,3)、(5,4)、(5,5)为边界,另这些边界相邻,所以下图边界个数为1。注:(2,2)、(3,3)相邻。

输入描述:第一行,行数M,列数N
第二行开始,是M行N列的像素的二维数组,仅包含像素1和5

输出描述:像素1代表的物体的边界个数。如果没有边界输出0(比如只存在像素1,或者只存在像素5)。

补充说明:

示例

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一键难忘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值