重塑YOLOv8 | 基于DBB重参数化模块的检测头改进【附保姆级代码】

本文收录于专栏:精通AI实战千例专栏合集

https://blog.csdn.net/weixin_52908342/category_11863492.html

从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。
每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~

YOLOv8改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点

YOLOv8是一款性能优越的目标检测算法,但随着计算机视觉任务的复杂化,研究人员不断探索新的改进方向,以进一步提升其在检测、分割、关键点检测等任务中的表现。

### DBB重参数化模块介绍及其在机器学习框架中的应用 #### 定义与概念 DBB(Dynamic Block-wise Binarization)重参数化是一种技术,在模型训练期间采用复杂结构,而在推理阶段简化为更高效的卷积操作。这种方法旨在平衡模型性能和计算效率之间的关系[^1]。 #### 工作机制 具体来说,在训练过程中引入多种类型的卷积核组合形成动态块状二值化(DBB),这些不同的配置有助于提升网络的学习能力和泛化效果;当进入部署模式也就是推理环节时,则会将上述多样的构建方式统一转化为标准形式的单一卷积层,从而降低运算成本并加快处理速度。 #### 实现细节 对于如何实现这一点,通常涉及到以下几个方面: - **定义可变架构**:创建能够支持不同路径或分支的选择性激活机制; - **融合权重更新规则**:确保即使是在切换状态下也能维持良好的收敛特性; - **转换逻辑编写**:开发一套算法用于从复杂的训练态平滑过渡到简单的推断态。 ```python class ReparameterizedConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): super(ReparameterizedConv, self).__init__() # Define multiple convolution paths during training phase. self.conv_main = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding) self.conv_cheap = nn.Conv2d(in_channels, out_channels, 1) def forward(self, x): if not self.training: return self.conv_main(x) + self.conv_cheap(x) else: y_main = F.relu(self.conv_main(x)) y_cheap = F.relu(self.conv_cheap(x)) return y_main + y_cheap def switch_to_deploy_mode(self): """Convert the model to deploy mode by merging convolutions.""" w_main = self.conv_main.weight.data.clone() w_cheap = self.conv_cheap.weight.data.clone() fused_weight = torch.nn.functional.pad(w_cheap, (1, 1, 1, 1)) + w_main new_conv = nn.Conv2d( self.conv_main.in_channels, self.conv_main.out_channels, self.conv_main.kernel_size, stride=self.conv_main.stride, padding=self.conv_main.padding, bias=True if self.conv_main.bias is not None else False ) new_conv.weight.data = fused_weight if self.conv_main.bias is not None: new_conv.bias.data = self.conv_main.bias.data + self.conv_cheap.bias.data for param in self.parameters(): param.requires_grad_(False) delattr(self, 'conv_main') delattr(self, 'conv_cheap') setattr(self, 'deploy', True) setattr(self, '_forward_impl', lambda x: F.conv2d(x, new_conv.weight, new_conv.bias)) ``` 此代码片段展示了怎样在一个自定义PyTorch类`ReparameterizedConv`中实施这一过程。注意这里仅作为示意用途,并未考虑所有可能的情况以及最佳实践。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一键难忘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值