【数学】思考:为什么初等行变换相对于左乘一个初等矩阵(如何更好理解左乘)

在课本中我们学习到一个重要结论:对一个矩阵进行初等行变换,相对于左乘一个初等矩阵。
这其中的原理值得我们思考

1.矩阵乘法

要搞懂其中原理,先要对矩阵乘法有一个详细了解。
矩阵乘法要求:左边矩阵列数=右边矩阵行数;得到矩阵行数=左边矩阵行数;列数=右边矩阵列数。(123)(111)=(1×1+2×1+3×1)=(6) \left( \begin{matrix} 1 & 2 & 3 \\ \end{matrix} \right)\left( \begin{matrix} 1\\ 1\\ 1\\ \end{matrix} \right)=\left( \begin{matrix} 1\times1+2\times1 + 3\times1 \\ \end{matrix} \right)=\left( \begin{matrix} 6 \\ \end{matrix} \right) (123)111=(1×1+2×1+3×1)=(6)在上面这个标准的矩阵乘法中,我们可以看到左乘一行,相对于将右边列的每一行乘左边系数再相加。
将上面例子稍微一般化(P1、P2、P3P_1、P_2、P_3P1P2P3nnn维列向量):(123)1×3(P1TP2TP3T)3×n=(1×P1T)+(2×P2T)+(3×P3T)=(1×P1T+2×P1T+3×P1T)1×n \left( \begin{matrix} 1 & 2 & 3 \\ \end{matrix} \right)_{1\times 3}\left( \begin{matrix} P^T_1\\ P^T_2\\ P^T_3\\ \end{matrix} \right)_{3\times n}=\begin{matrix} (1\times P^T_1)\\ +\\ (2\times P^T_2)\\ +\\ (3\times P^T_3)\\ \end{matrix} =\left( \begin{matrix} 1\times P^T_1+2\times P^T_1 + 3\times P^T_1 \\ \end{matrix} \right)_{1\times n} (123)1×3P1TP2TP3T3×n=(1×P1T)+(2×P2T)+(3×P3T)=(1×P1T+2×P1T+3×P1T)1×n
一个矩阵B左乘只有一行的矩阵A,相对于将B中同一列的元素乘A对应元素(系数)再相加,得到只有一行的矩阵C。A中每个元素作为系数控制着B中每一行的倍数

2.左乘

(111234333)→(111012333) \left( \begin{matrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 3 & 3 \\ \end{matrix} \right) \rightarrow \left( \begin{matrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 3 & 3 & 3 \\ \end{matrix} \right) 123133143103113123我们将左边矩阵的第二行减去两倍的第一行,可以得到右边的矩阵,这相对于给左边矩阵左乘了一个初等矩阵P3×3P_{3\times 3}P3×3
即:P3×3(111234333)=(111012333)P_{3\times 3} \left( \begin{matrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 3 & 3 \\ \end{matrix} \right) = \left( \begin{matrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 3 & 3 & 3 \\ \end{matrix} \right) P3×3123133143=103113123
根据上面矩阵乘法的理解,我们来思考P3×3P_{3\times 3}P3×3是什么。

  1. 首先我们看右边矩阵的第一行和左边矩阵的第一行是没变的,证明P3×3P_{3\times 3}P3×3第一行的系数对应(1,0,0),表示:右边的第一行=左边第一行的1倍+左边第二行的0倍+左边第三行的0倍
  2. 右边矩阵的第二行是左边矩阵的第二行减去两倍的第一行,证明P3×3P_{3\times 3}P3×3第二行的系数对应(-2,1,0),表示:右边的第二行=左边第一行的-2倍+左边第二行的1倍+左边第三行的0倍
  3. 右边矩阵的第三行和左边矩阵的第三行是没变的,证明P3×3P_{3\times 3}P3×3第三行的系数对应(0,0,1),表示:右边的第三行=左边第一行的0倍+左边第二行的0倍+左边第三行的1倍
    得到:P3×3=(100−210001)P_{3\times 3} =\left( \begin{matrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right) P3×3=120010001
    简单验证得到:P3×3=(100−210001)(111234333)=(111012333)P_{3\times 3}=\left( \begin{matrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right) \left( \begin{matrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 3 & 3 \\ \end{matrix} \right) = \left( \begin{matrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 3 & 3 & 3 \\ \end{matrix} \right) P3×3=120010001123133143=103113123
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值