求极限方法:基本极限、凑 “1^∞” 型不定式

常用的基本极限

  • lim (x→0) sin x / x = 1
  • lim (x→∞) (1 + 1/x)^x = e
  • lim (x→0) (1 + x)^(1/x) = e
  • lim (x→0) (a^x - 1) / x = ln a (a > 0)
  • lim (x→∞) a^(1/x) = 1 (a > 0)
  • lim (n→∞) ⁿ√n = 1
  • lim(x→∞) (a_n*x^n + a_(n-1)*x^(n-1) + ... + a_0) / (b_m*x^m + b_(m-1)*x^(m-1) + ... + b_0)
    • = a_n / b_m (n = m)
    • = 0 (n < m)
    • = ∞ (n > m) (具体符号取决于首项系数)
  • 当x趋近无穷大时: 看多项式最高次数的系数比。
  • lim(x→∞) x^n:
    • 0 (x的绝对值 < 1)
    • ∞ (x > 1)
    • 1 (x = 1)
    • 不存在 (x=-1, 震荡)
  • lim(n→∞) e^(nx):
    • 0 (x<0)
    • +∞ (x>0)
    • 1(x=0)

. “1^∞”型不定式极限

“1^∞”型极限是指形如 lim [1 + α(x)]^β(x) 的极限,其中 lim α(x) = 0lim β(x) = ∞

常用结论:

lim α(x) = 0, lim β(x) = ∞, 且 lim [α(x) * β(x)] = A,则 lim [1 + α(x)]^β(x) = e^A

处理步骤:

  1. 写标准形式: 将原式写成 lim [1 + α(x)]^β(x) 的形式。
  2. 求极限: 计算 lim [α(x) * β(x)] = A
  3. 写结果: 原式 = e^A
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值