常用的基本极限
lim (x→0) sin x / x = 1
lim (x→∞) (1 + 1/x)^x = e
lim (x→0) (1 + x)^(1/x) = e
lim (x→0) (a^x - 1) / x = ln a
(a > 0)lim (x→∞) a^(1/x) = 1
(a > 0)lim (n→∞) ⁿ√n = 1
lim(x→∞) (a_n*x^n + a_(n-1)*x^(n-1) + ... + a_0) / (b_m*x^m + b_(m-1)*x^(m-1) + ... + b_0)
= a_n / b_m
(n = m)= 0
(n < m)= ∞
(n > m) (具体符号取决于首项系数)
- 当x趋近无穷大时: 看多项式最高次数的系数比。
lim(x→∞) x^n
:- 0 (x的绝对值 < 1)
- ∞ (x > 1)
- 1 (x = 1)
- 不存在 (x=-1, 震荡)
lim(n→∞) e^(nx)
:- 0 (x<0)
- +∞ (x>0)
- 1(x=0)
. “1^∞”型不定式极限
“1^∞”型极限是指形如 lim [1 + α(x)]^β(x)
的极限,其中 lim α(x) = 0
且 lim β(x) = ∞
。
常用结论:
若 lim α(x) = 0
, lim β(x) = ∞
, 且 lim [α(x) * β(x)] = A
,则 lim [1 + α(x)]^β(x) = e^A
。
处理步骤:
- 写标准形式: 将原式写成
lim [1 + α(x)]^β(x)
的形式。 - 求极限: 计算
lim [α(x) * β(x)] = A
。 - 写结果: 原式 =
e^A
。