- 博客(41)
- 收藏
- 关注
原创 CAU数据挖掘 第五章 聚类问题
性质:应用:PAM是 k-medoids算法 的算法之一性能分析:CLARA方法-大数据集合-取样通过建树或者拆树的方法进行聚类由下而上的聚类如果要分出k个聚类,则每次从旧聚类(最开始的大聚类)中选出中心点进行聚类,选k - 1次提取每个点的聚类特征( Clustering Feature, CF)建立聚类特征树( Clustering Feature Tree, CF树),通过树划分的叶子节点簇进行聚类,从而提高性能。CF树:注意,叶子结点是CF簇如何建树:如何分裂
2025-07-15 17:19:51
387
原创 CAU数据挖掘第四章 分类问题
通过计算每个训练数据到待分类元组的距离, 取与待分类元组距离最近的k个训练数据, k个数据中哪个类别的训练数据占多数, 则待分类元组就属于哪个类别。可以通过一个单调递减函数, 将距离转换成相似性度量, 相似性度量的取值一般在区间[0, 1]之间贝叶斯后验的思想:假设一个医生统计自己看心脏病人的患病率是80%,那么当他看下一个心脏病人时自然认为这个病人患心脏病的概率是80%,这是先验概率。担当这个病人做完检查后成阳性,则患心脏病的概率提升为90%,这就是后验概率。朴素贝叶斯分类器。
2025-07-13 15:11:09
861
原创 CAU数据挖掘 支持向量机
在一群点中用线性函数分类:但也有线性不可分问题:线性不可分问题:两个平行超平面间隔距离最大部分难以区分的点忽略通过升维将非线性变为线性期望风险泛函:定义最优函数在真实数据分布中的期望风险经验风险泛函:在有限的数据集上最优函数的期望风险。由于真实分布未知,机器学习传统都是用最小化经验风险来替代最小化期望风险的目标学习理论的关键定理的解读:如果一个模型方法在最坏情况下仍能表现良好, 则对它的推广能力才有信心。函数集的容量容量( capacity) : 函数集在一组样本集上可能实现的分类
2025-06-30 17:33:10
1132
2
原创 李哥AI第八章:文字生成任务
transform中的生成模型是为了实现翻译任务的,翻译任务是一种序列到序列的任务。而且翻译任务的输出长度是不确定的。所以这个模型和之前的模型的结构截然不同。
2025-06-14 09:52:26
241
原创 人工智能 深度可分离卷积
深度可分离卷积:一种将卷积特征提取和通道变化分离的方法,用这种方法能降低模型参数。如图所示,在第一步中输入的每层通道都单独进行卷积,卷积后不合并;第二步,利用单卷积核进行合并。实际上就是避免使用多个大的卷积核。
2025-06-07 16:57:10
178
原创 CAU人工智能class6 ResNet
现有的研究证明,加深神经网络深度可以得到更好的效果但是随着网络层数的增加,即使解决或缓解了以上存在的问题,仍然有一朵乌云挥之不去。
2025-05-24 21:51:04
662
原创 CAU人工智能class4 批次归一化
在对输入数据进行预处理时会用到归一化,将输入数据的范围收缩到0到1之间,这有利于避免纲量对模型训练产生的影响。
2025-05-23 21:48:03
786
原创 CAU人工智能class3 优化器
随机梯度下降到缺点:SGD 每一次迭代计算 mini-batch 的梯度,然后对参数进行更新,每次迭代更新使用的梯度都只与本次迭代的样本有关。
2025-05-21 21:38:11
338
原创 CAU数据库class3 关系型数据库基础
例子:关系模式通常可以简记为:R (U ) 或 R (A1, A2, …, An)用户根据自己需求指定,数值合理,范围合适。
2025-05-20 21:12:52
478
原创 python自学笔记5 函数
产生全 0 矩阵: 一层 for 循环产生单位矩阵矩阵: 一层 for 循环产生对角方阵: 一层 for 循环提取对角线元素: 一层 for 循环计算方阵迹判断矩阵是否对称: 两层 for 循环矩阵行列式矩阵逆将函数打包成py文件示例;计算圆面积输入:radius:半径输出:area:面积计算圆周长输入:radius:半径输出:circ:周长将上述代码打包为circle.py文件利用下面的代码可以调用这个模块r = 5。
2025-05-20 16:41:15
1053
原创 CAU人工智能 class1:人工智能概述
Machine Learning》 中的定义:如果一个程序可以在任务 T 上,随着经验 E 的增加,效果 P 也可以随之增加,则称这个程序可以从经验中学习从上图中可以看出,这是一个最优化过程,很多最优化算法都能应用其中。
2025-05-13 08:31:53
1005
原创 C++自学笔记 makefile
本博客参考南科大于仕琪教授的讲解视频和这位同学的学习笔记:参考博客感谢两位的分享。用于组织大型项目的编译,是一个一键编译项目的脚本文件。本博客通过四个版本的makefile逐步说明makefile的使用四个演示文件main文件factorial.cpp文件(用于打印递归)printhello.cpp文件function.h文件(头文件)法一(不用makefile)法二(创建makefile)version 1原理:比较目标文件hello与依赖文件的最后修改时
2025-05-11 18:31:31
576
2
原创 CAU程序设计2 class10 模板
模板实现将数据类型作为参数传入,从而提升函数的灵活性。模板可以分为两类,一个是函数模版,另外一个是类模板。通过参数实例化定义出具体的函数或类,称为模板函数或模板类。模板发生的时机是在编译时模板本质上就是一个代码生成器,它的作用就是让编译器根据实际调用来生成代码。编译器去处理时,实际上由函数模板生成了多个模板函数,或者由类模板生成了多个模板类。
2025-05-06 17:40:44
775
原创 C++自学笔记3 mutable关键字
第一个应用场景:作用域类中的私有成员函数加上后即使在const成员函数中也可以修改。在lambda表达式中加上这个来改变传入参数的值(了解)作用:消除一些const的影响。这个关键字具体的应用场景不多。
2025-04-29 20:23:13
93
原创 C++自学笔记1 在VS上进行调试
调试:在程序运行时暂停程序,查看内存情况判断程序运行是否符合预期注意点:调试一定要在bebug模式下进行而不能在release(发行)模式下进行,因为要保证有调试器。
2025-04-29 16:16:36
199
原创 CAU程序设计2 class8 多态
基类定义虚函数**派生类中要覆盖虚函数 **(覆盖的是虚函数表中的地址信息)创建派生类对象基类的指针指向派生类对象(或基类引用绑定派生类对象)通过基类指针(引用)调用虚函数最终的效果:基类指针调用到了派生类实现的虚函数。(如果没有虚函数机制,基类指针只能调用到基类的成员函数)虚函数表。
2025-04-27 11:56:39
631
原创 CAU程序设计2 class7 继承
当派生类中有定义堆空间时: Base(rhs)//显式调用基类的拷贝构造if(this!= &rhs){//显式调用基类的赋值运算符函数//关键基类中有定义堆空间时不一定用,因为可以在基类中定义拷贝构造函数,赋值运算函数,析构函数。然后再派生类中默认调用。
2025-04-24 22:32:35
862
原创 CAU程序设计2 class5 模板
当同时使用了模板和原数据类型时:优先使用原数据类型(即上图中使用第二个函数)在有些情况下,模板不能处理一些特殊情况,这时就需要额外定义一个原数据类型的函数在处理。
2025-04-10 16:08:57
271
原创 CAU程序设计2 class3 函数重载
临时对象只能作为常引用的实际参数const表示只读,使用const有关的语法均要用const相关的手段进行保护。(两点启示 1.构造类的时候能用const尽量用;2.有const类对象时,使用的语法全要用const。
2025-04-02 16:56:26
498
原创 CAU程序设计2 class2 函数重载
在C++中可以定义重名函数,重名函数可以进行函数重载,使同一个函数能够应付多种情况。上述代码重载的最大值函数。
2025-04-01 16:58:36
354
原创 CAU程序设计2 class1 类与构造函数
private:public://构造函数的开始hour = h;min = m;sec = s;//构造函数的结束hour = h;min = m;sec = s;如上述代码所示,与类名相同的函数就是构造函数,构造函数没有返回类型,被调用时只在类对象出生时生效构造函数可以重载private:public:hour = h;min = m;sec = s;min = 0;sec = 0;min = 0;sec = 0;
2025-03-31 10:10:44
183
原创 李哥AI第六章特征提取和无监督学习
由两个模型组成,一个模型负责将输入训练为特征值(很好的提取特征的能力);一开始人类不知道什么是猫和狗,但见得多了就能分辨这两种是不同的动物。上边这个例子是将图片增广为两类后,用模型判断其中一类模型是否与自己的另一类增广图片相似。如上图所示,这种分类需要人为为图片打赏标签进行,依据标签的不同进行不同的分类。在上两章的分类任务中就是将图片的特征提取出来,在利用特征进行分类。这是一个利用部分图片生成全部图片的全部图片的模型。一种根据真人图片生成二次元风格图片的模型。这是一个补全文字的模型。
2025-03-17 22:31:18
326
原创 李哥AI第四章卷积神经网络&&CAU人工智能class3
为什么分类任务不用一个输出值:因为在一个连续的数轴上,利用预测值和类别值更近的方法各个类别与预测点的距离各不相同,即各个类别不等价。在分类任务中只有是和不是的区别,没有哪一个更像的区别。
2025-03-14 22:22:55
1138
原创 李哥AI第三节回归实战
目的是将参数w尽量减小,因为在loss计算时会乘以w,较小的w可以避免偏移较大的点的影响,避免过拟合。(能减小loss的原因:优化过程loss会降低,将w加入loss,w也会下降),一般w*w前会加一个很小的系数,因为w一般较大。Dataset类用三个函数完成上述过程:init函数负责初始化,输入的文件地址,输出x,y两个数据。取出所有列数据中最重要的几列进行计算,避免其他无关项的干扰:(通过计算相关系数的方法)Dataset类的作用为处理文件数据,将文件地址输入后输出整理好的数据x和y。
2025-03-12 23:05:29
585
原创 李哥AI第二节python实战
据李哥说明:梯度是自动存在参数中的,在参数计算时会梯度也会自动计算。从上述代码中可以看到:参数在乘学习率和减去自身梯度时梯度都会更新,因此要加上以上代码进行避免干扰。输入:data为训练数据,label为标签数据,batchsize为每批数据量。以真实参数的排列形状定义默认初始参数w_0,b_0,两个参数均要求梯度。代码简要解析:生成与数据长度相同的下表,随机打乱后分批输出。注释:用numpy处理不了张量,因此先要将数据转化为矩阵。maeLoss函数:计算一组数据的loss。该代码为所需调用的包。
2025-03-07 10:53:11
392
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人