这一篇我们做一个详细的总结,周五了,疫情还没结束,父母也都老了,有时候真的感觉身为儿子实在不孝,常年在外,回家很少,家里有点事父母也不会跟我这个儿子说,小病小灾的也舍不得去医院看,都抗过去,不知道这会不会也是你的无奈呢?有时间多回家看看吧~~~~~
单细胞+空间转录组的整合分析方法总结
图片.png
目前scRNA-seq将每个转录物与单个细胞相关联,但关于这些转录物在组织中的位置信息丢失了;相反的,空间转录组学技术知道转录物的位置,却不知道是哪个细胞产生了转录物。因此,scRNA-seq与空间转录组学的整合可以产生组织中细胞亚群的高分辨率图谱。
来自美国的科研人员在《Nature reviews genetics》发表综述文章,回顾了整合scRNA-seq与空间转录组学技术研究的尝试和努力,包括新兴的整合计算方法,并提出了有效结合当前方法的途径。
整合scRNA-seq和空间转录组学研究的流程模式
scRNA-seq+空间组学整合分析的研究进展
目前已有整合空间转录组学和scRNA-seq数据分析的研究,提供了组织组成和功能的新见解。下表展示了相关的研究现状,包括正常的组织稳态和发育、肿瘤微环境、其他病变和损伤的微环境等方向。
解析scRNA-seq和空间转录组数据的研究
scRNA-seq+空间组学整合分析的计算方法
鉴于空间转录组学方法还不能在组织中产生深层单细胞分辨率的转录组图谱,能够成功整合单细胞和空间转录组数据的分析将有助于理解细胞类型分布的结构以及构成这种结构的细胞间通讯的假定机制。整合scRNA-seq和空间转录组数据有两种主要方法:去卷积(Deconvolution)和映射(Mapping)。去卷积旨在根据单细胞数据,从每个捕获点的mRNA转录物的混合物中分离出离散的细胞亚群;映射有两方面:将指定的基于scRNA的细胞亚型定位到HPRI图谱上的每个细胞和将每个scRNA-seq细胞定位到组织的特定生态位或区域。
单细胞和空间转录组数据的整合策略
去卷积:从单个捕获点中分离出离散的细胞亚型。去卷积有两种主要方法:推断一个特定spot的细胞亚型比例和对一个特定的空间转录组spot进行评分,以确定它与单个细胞亚型的对应程度。
基于推理的去卷积技术涉及估计每个细胞类型在特定捕获点的比例。这种形式的去卷积的方法之一是采用基于统计回归的模型,各种线性回归模型已被应用于解卷bulk RNA-seq混合物。
估计每个细胞类型在给定捕获点中的确切比例的补充方法是通过贝叶斯统计框架,将概率分布与scRNA-seq数据的基因计数分布相适应。其中SPOTlight 的基准测试策略是最彻底的:评估细胞类型检测的准确性、敏感性和特异性以及与真实情况的整体相关性。此外,通过HPRI可以获得更高分辨率的亚型空间定位的物理验证。
有许多基于富集分数的去卷积技术,例如Seurat 3.0和多模态交叉分析等;解决数据集不匹配的去卷积技术策略,例如SpatialDWLS等。
映射:以单细胞分辨率创建空间分辨率的细胞类型映射。就像去卷积一样,绘制图谱的第一步是基于scRNA-seq数据建立细胞亚型。然后,映射的主要挑战是将基于scRNA-seq的细胞类型从HPRI数据分配到每个细胞上。对14种已发表的算法进行系统评估,这些算法通过基于聚类的分析实现了映射的批量校正策略,确定了三种最有效地将scRNA-seq数据与单细胞分辨率空间数据集成的算法:LIGER、Seurat Integration(来自Seurat 3.0)和Harmony。这三种算法最终都是使用不同的方法将聚类集成到低维空间中,通过对聚类的群体检测得到细胞类型。
将空间数据纳入细胞间通讯分析。细胞亚群之间的相互作用介导组织内稳态、发育和疾病。空间转录组学数据非常适合于评估由scRNA-seq计算的配体-受体相互作用的可靠性。预测参与细胞间通讯的配体-受体相互作用对的标准算法主要是结合scRNA-seq数据和已知配体-受体相互作用的