空间转录组基础分析之整合篇

本文探讨了空间转录组数据的整合分析,指出整合的主要目的是揭示不同空间数据的差异和生态位变化。尽管目前进行整合分析的文章不多,但其重要性随着对细胞空间分布理解的深化而增加。文章引用了多个研究实例,展示了整合方法如Seurat和StLearn在形态学划分和多组学分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者,Evil Genius
11月了,又是一年,时间真快
今天这一篇我们来讨论关于空间转录组数据整合的问题,大家在此之前可以先参考一下文章
单细胞基础分析之多样本整合篇
超全总结--单细胞+空间转录组的整合分析方法总结
单细胞多组学整合分析方法讨论
单细胞 & 空间整合去批次方法比较(2)
单细胞 & 空间整合去批次方法比较
关于空间转录组数据的整合问题,一开始认为主要和单细胞数据联合来看细胞的空间位置,现在看来,还是浅,我们来看看空间转录组数据整合分析的内容,这次我们要多参考一篇文章。
2022年8月发表于nature的文章 Spatial multi-omic map of human myocardial infarction对空间组学数据做了整合分析,并且从细胞和分子两个角度进行了整合,这部分整合的内容我详细分享过,文章在时空多样本聚类分析导论,这里就不过多介绍了。

细胞聚类

分子聚类

2022年8月发表于blood的文章Immunothrombosis and vascular heterogeneity in cerebral cavernous malformation仅是看一些关键基因的空间表达,而且大部分文章都是这样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值