Floyd 求最小环

本文介绍了Floyd算法用于计算无向图中两点之间的最短路径,并提出了一种改进算法同时寻找最小环。通过分析环中节点编号特点,证明了改进算法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Floyd 求最小环
\*==================================================*/
朴素算法
e(u,v)表示uv之间的连边, min(u,v)表示删除uv之间的连边之后
uv之间的最短路, 最小环则是min(u, v) + e(u, v). 时间复杂度是
O(EV^2).
改进算法
floyd的同时,顺便算出最小环
g[i][j]=i, j之间的边长
dist:=g;
for k:=1 to n do
begin
for i:=1 to k-1 do
for j:=i+1 to k-1 do
answer:=min(answer, dist[i][j]+g[i][k]+g[k][j]);
for i:=1 to n do
for j:=1 to n do
dist[i][j]:=min(dist[i][j],dist[i][k]+dist[k][j]);
end;
最小环改进算法的证明
一个环中的最大结点为k(编号最大), 与他相连的两个点为i, j, 这个环的最
短长度为g[i][k]+g[k][j]+ij的路径中所有结点编号都小于k的最短路
径长度. 根据floyd的原理, 在最外层循环做了k-1次之后, dist[i][j]
代表了ij的路径中所有结点编号都小于k的最短路径
综上所述,该算法一定能找到图中最小环.
const int INF = 1000000000;
const int N = 110;
int n, m; // n:节点个数, m:边的个数
int g[N][N]; // 无向图
int dist[N][N]; // 最短路径
int r[N][N]; // r[i][j]: ij的最短路径的第一步
int out[N], ct; // 记录最小环
int solve(int i, int j, int k){// 记录最小环
ct = 0;
while ( j != i ){
out[ct++] = j;
j = r[i][j];
}
out[ct++] = i; out[ct++] = k;
return 0;
}
int main(void){
while( scanf("%d%d", &n, &m) != EOF ){
int i, j, k;
for ( i=0; i < n; i++ )
for ( j=0; j < n; j++ ){
g[i][j] = INF; r[i][j] = i;
}
for ( i=0; i < m; i++ ){
int x, y, l;
scanf("%d%d%d", &x, &y, &l);
--x; --y;
if ( l < g[x][y] ) g[x][y] = g[y][x] = l;
}
memmove(dist, g, sizeof(dist));
int Min = INF; // 最小环
for ( k=0; k < n; k++ ){//Floyd
for ( i=0; i < k; i++ )// 一个环中的最大结点为k(
号最大)
if ( g[k][i] < INF )
for ( j=i+1; j < k; j++ )
if ( dist[i][j] < INF && g[k][j]
< INF && Min > dist[i][j]+g[k][i]+g[k][j] ){
Min =
dist[i][j]+g[k][i]+g[k][j];
solve(i, j, k); // 记录最小环
}
for ( i=0; i < n; i++ )
if ( dist[i][k] < INF )
for ( j=0; j < n; j++ )
if ( dist[k][j] < INF && dist[i][j]
> dist[i][k]+dist[k][j] ){
dist[i][j] =
dist[i][k]+dist[k][j];
r[i][j] = r[k][j];
}
}
if ( Min < INF ){
for ( ct--; ct >= 0; ct-- ){
printf("%d", out[ct]+1);
if ( ct ) printf(" ");
}
}
else printf("No solution.");
printf("\n");
}
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千秋TʌT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值