1. 信息处理与知识获取
1.1 快速查找资料:
替代传统搜索引擎,直接获取结构化答案(如行业数据、技术概念解释等)。
场景:你需要了解“2024年AI芯片的市场趋势”,但搜索引擎前几页全是广告和碎片化信息。
操作:
直接提问:“2024年AI芯片行业的三大技术方向是什么?附上各方向的代表公司和关键数据。”
进阶用法:“对比NVIDIA和AMD在边缘计算芯片领域的布局,用表格形式呈现。”
结果:DeepSeek 会直接整理出结构化答案(比如:算力需求、能效比优化、异构集成),并标注信息来源(如Gartner报告或TechCrunch文章),省去你筛选垃圾信息的时间。
1.2 文献/报告摘要:
上传PDF/Word文件,快速提取核心观点(适合竞品分析、学术研究)。
场景:老板丢给你一份30页的《新能源汽车行业白皮书》,要求2小时内提炼出竞品动向。
操作:
上传PDF文件,输入指令:
“提取报告中关于‘电池技术路线’的争议点,列出支持固态电池和液流电池的双方论据。”
“用时间轴格式总结特斯拉、比亚迪、蔚来2025年的产能规划。”
偷懒技巧:直接问:“这份报告里有哪些反常识的结论?”
结果:你会得到一份带页码标记的摘要,比如:
P.12:宁德时代认为固态电池量产需至2030年(vs 丰田声称2027年)
P.18:二线厂商普遍押注钠离子电池作为过渡方案
1.3 术语翻译:
支持多语言互译,尤其适合技术文档或商务邮件的精准翻译。
场景:需要将中文技术文档译成英文,但专业术语(如“异构计算”“功耗墙”)让谷歌翻译翻车。
操作:
基础版:输入“将‘该架构通过存算一体突破冯·诺依曼瓶颈’翻译成英文,术语保留中文括号注释。”
→ 输出:"This architecture breaks the von Neumann bottleneck through memory-computing integration (存算一体)."进阶版:上传整份合同,指令:“翻译第4条‘违约责任’,法律术语保留拉丁文原文(如force majeure)。”
结果:比传统翻译工具更贴合行业习惯,避免把“区块链共识机制”译成“block chain agreement”(正确应为consensus mechanism)。
2. 内容创作与优化
2.1文案生成:
自动撰写邮件、策划方案、社交媒体文案(可指定风格如"专业严谨"或"轻松活泼")。
场景:你需要给客户写一封跟进邮件,但不想显得太推销,又怕过于冷淡。
操作:
基础指令:“写一封给潜在客户的英文跟进邮件,语气专业但带点亲切感,提及上周的会议,并附上案例链接。避免使用‘我们是最好的’这种话术。”
进阶玩法:
先描述客户背景:“收件人是硅谷科技公司的CTO,喜欢数据驱动决策。”
再要求风格:“用‘问题-解决方案’结构,在第三段埋一个反常识的数据。”
2.2 PPT/演讲稿辅助:
提供内容框架设计,甚至生成逐字稿(输入主题即可生成大纲)。
场景:老板突然让你准备一个关于“量子计算商业化”的10分钟演讲。
操作:
第一步:暴力破题
输入:“给我一个非技术高管能听懂的量子计算演讲框架,用医疗、金融、物流三个案例贯穿。”第二步:填充血肉
追问:“展开‘金融用例’部分,加入JPMorgan去年用量子算法优化期权的具体收益数字。”高阶技巧:
指定结构:“用‘误解-真相-行动’三段式:先反驳‘量子计算离我们很远’,再讲3年内的落地场景,最后呼吁提前布局。”