三、深度学习基础2(前、反向传播;超参数)

前向传播与反向传播

前向传播

反向传播

神经网络的输出 、卷积神经网络输出值以及Pooling  层输出值(主要作用是下采样)过程皆为比较简单的基础知识,在此不作详细赘述。

 超参数

超参数:比如算法中的 learning rate (学习率)、iterations(梯度下降法循环的数量)、(隐藏层数目)、(隐藏层单元数目)、choice of activation function(激活函数的选择)都需要根据实际情况来设置,这些数字实际上控制了最后的参数和的值,所以它们被称作超参数。

如何寻找超参数的最优值

1、猜测和检查:根据经验或直觉,选择参数,一直迭代。
2、网格搜索:让计算机尝试在一定范围内均匀分布的一组值。
3、随机搜索:让计算机随机挑选一组值。
4、贝叶斯优化:使用贝叶斯优化超参数,会遇到贝叶斯优化算法本身就需要很多的参数的困难。
5、在良好初始猜测的前提下

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

满满myno

非常感谢对我创作的支持,爱你呦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值