前向传播与反向传播


神经网络的输出 、卷积神经网络输出值以及Pooling 层输出值(主要作用是下采样)过程皆为比较简单的基础知识,在此不作详细赘述。
超参数
超参数:比如算法中的 learning rate (学习率)、iterations(梯度下降法循环的数量)、(隐藏层数目)、(隐藏层单元数目)、choice of activation function(激活函数的选择)都需要根据实际情况来设置,这些数字实际上控制了最后的参数和的值,所以它们被称作超参数。
如何寻找超参数的最优值
1、猜测和检查:根据经验或直觉,选择参数,一直迭代。
2、网格搜索:让计算机尝试在一定范围内均匀分布的一组值。
3、随机搜索:让计算机随机挑选一组值。
4、贝叶斯优化:使用贝叶斯优化超参数,会遇到贝叶斯优化算法本身就需要很多的参数的困难。
5、在良好初始猜测的前提下