XTuner 微调个人小助手认知 -- 书生大模型实训营第4期基础岛第五关

目录

基础任务

任务要求

算力要求

环境配置与数据准备

使用 conda 先构建一个 Python-3.10 的虚拟环境

安装 XTuner

验证安装

修改提供的数据

创建一个新的文件夹用于存储微调数据

​编辑

创建修改脚本

执行脚本

查看数据

训练启动

复制模型

修改 Config

启动微调

权重转换

模型合并

模型 WebUI 对话

进阶任务

任务要求


基础任务

任务要求

  • 使用 XTuner 微调 InternLM2-Chat-7B 实现自己的小助手认知,如下图所示(图中的尖米需替换成自己的昵称),记录复现过程并截图。

算力要求

微调内容需要使用 30% A100 才能完成。 本次实战营的微调内容包括了以下两个部分:

  1. SFT 数据的获取
  2. 使用 InternLM2.5-7B-Chat 模型微调

XTuner 文档链接:XTuner-doc-cn

环境配置与数据准备

使用 conda 先构建一个 Python-3.10 的虚拟环境

cd ~
#git clone 本repo
git clone https://github.com/InternLM/Tutorial.git -b camp4
mkdir -p /root/finetune && cd /root/finetune
conda create -n xtuner-env python=3.10 -y
conda activate xtuner-env

安装 XTuner

git clone https://github.com/InternLM/xtuner.git
cd /root/finetune/xtuner

pip install  -e '.[all]'
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu121
pip install transformers==4.39.0

 其中:-e 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效

验证安装

打印配置文件: 在命令行中使用 xtuner list-cfg 验证是否能打印配置文件列表。

xtuner list-cfg

如上图所示,安装成功。


修改提供的数据

创建一个新的文件夹用于存储微调数据

mkdir -p /root/finetune/data && cd /root/finetune/data
cp -r /root/Tutorial/data/assistant_Tuner.jsonl  /root/finetune/data

此时 `finetune` 文件夹下应该有如下结构 

finetune
├── data
│   └── assistant_Tuner.jsonl
└── xtuner


创建修改脚本

写一个脚本生成修改我们需要的微调训练数据,在当前目录下创建一个 change_script.py 文件,内容如下:

# 创建 `change_script.py` 文件
touch /root/finetune/data/change_script.py

将下述内容copy至文件内:

import json
import argparse
from tqdm import tqdm

def process_line(line, old_text, new_text):
    # 解析 JSON 行
    data = json.loads(line)
    
    # 递归函数来处理嵌套的字典和列表
    def replace_text(obj):
        if isinstance(obj, dict):
            return {k: replace_text(v) for k, v in obj.items()}
        elif isinstance(obj, list):
            return [replace_text(item) for item in obj]
        elif isinstance(obj, str):
            return obj.replace(old_text, new_text)
        else:
            return obj
    
    # 处理整个 JSON 对象
    processed_data = replace_text(data)
    
    # 将处理后的对象转回 JSON 字符串
    return json.dumps(processed_data, ensure_ascii=False)

def main(input_file, output_file, old_text, new_text):
    with open(input_file, 'r', encoding='utf-8') as infile, \
         open(output_file, 'w', encoding='utf-8') as outfile:
        
        # 计算总行数用于进度条
        total_lines = sum(1 for _ in infile)
        infile.seek(0)  # 重置文件指针到开头
        
        # 使用 tqdm 创建进度条
        for line in tqdm(infile, total=total_lines, desc="Processing"):
            processed_line = process_line(line.strip(), old_text, new_text)
            outfile.write(processed_line + '\n')

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Replace text in a JSONL file.")
    parser.add_argument("input_file", help="Input JSONL file to process")
    parser.add_argument("output_file", help="Output file for processed JSONL")
    parser.add_argument("--old_text", default="尖米", help="Text to be replaced")
    parser.add_argument("--new_text", default="闻星", help="Text to replace with")
    args = parser.parse_args()

    main(args.input_file, args.output_file, args.old_text, args.new_text)

然后修改如下: 打开 change_script.py ,修改 --new_text 中 default="闻星" 为你的名字。如下图:


执行脚本

# usage:python change_script.py {input_file.jsonl} {output_file.jsonl}
cd ~/finetune/data
python change_script.py ./assistant_Tuner.jsonl ./assistant_Tuner_change.jsonl  # 修改后符合 XTuner 格式的训练数据

 此时 data 文件夹下应该有如下结构:

|-- /finetune/data/
    |-- assistant_Tuner.jsonl
    |-- assistant_Tuner_change.jsonl

 查看data文件结构如下:

查看数据

cat assistant_Tuner_change.jsonl | head -n 3

 检查自己要修改的名字是否在数据中:


训练启动

复制模型

软连接开发机中提供的微调模型:本模型位于
/root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat

mkdir /root/finetune/models

ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/finetune/models/internlm2_5-7b-chat


修改 Config

我们可以获取官方写好的 config:

# cd {path/to/finetune}
cd /root/finetune
mkdir ./config
cd config
xtuner copy-cfg internlm2_5_chat_7b_qlora_alpaca_e3 ./

修改如图几行:

源于课程文档

此外,还可以对一些重要的参数进行调整,包括学习率(lr)、训练的轮数(max_epochs)等等

启动微调

开始我们下一阶段的旅程:XTuner 启动~!

当我们准备好了所有内容,我们只需要将使用 xtuner train 命令令即可开始训练。

xtuner train 命令用于启动模型微调进程。该命令需要一个参数:CONFIG 用于指定微调配置文件。这里我们使用修改好的配置文件

internlm2_5_chat_7b_qlora_alpaca_e3_copy.py
训练过程中产生的所有文件,包括日志、配置文件、检查点文件、微调后的模型等,默认保存在 work_dirs 目录下,我们也可以通过添加 --work-dir 指定特定的文件保存位置。--deepspeed 则为使用 deepspeed, deepspeed 可以节约显存

运行命令进行微调:

cd /root/finetune
conda activate xtuner-env

xtuner train ./config/internlm2_5_chat_7b_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero2 --work-dir ./work_dirs/assistTuner

部分训练过程中的图,大家可以简单对照看看自己的train过程是否正常: 

预计耗时1.3h ~


权重转换

模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 HuggingFace 格式文件,那么我们可以通过以下命令来实现一键转换。

使用 xtuner convert pth_to_hf 命令来进行模型格式转换

xtuner convert pth_to_hf 命令用于进行模型格式转换。该命令需要三个参数:CONFIG 表示微调的配置文件, PATH_TO_PTH_MODEL 表示微调的模型权重文件路径,即要转换的模型权重, SAVE_PATH_TO_HF_MODEL 表示转换后的 HuggingFace 格式文件的保存路径。

还可以在转换的命令中添加几个额外的参数:

参数名解释
--fp32代表以fp32的精度开启,假如不输入则默认为fp16
--max-shard-size {GB}代表每个权重文件最大的大小(默认为2GB)
cd /root/finetune/work_dirs/assistTuner

conda activate xtuner-env

# 先获取最后保存的一个pth文件
pth_file=`ls -t /root/finetune/work_dirs/assistTuner/*.pth | head -n 1 | sed 's/:$//'`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_5_chat_7b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

模型格式转换完成后,我们的目录结构如下:

转换完成后,可以看到模型被转换为 HuggingFace 中常用的 .bin 格式文件,这就代表着文件成功被转化为 HuggingFace 格式了。

hf 文件夹即为我们平时所理解的所谓 “LoRA 模型文件”,可以简单理解:LoRA 模型文件 = Adapter

模型合并

对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(Adapter),训练完的这个层最终还是要与原模型进行合并才能被正常的使用

对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter ,因此是不需要进行模型整合的。

XTuner 中提供了一键合并的命令 xtuner convert merge,在使用前我们需要准备好三个路径,包括原模型的路径、训练好的 Adapter 层的(模型格式转换后的)路径以及最终保存的路径。

在模型合并这一步还有其他很多的可选参数:

参数名解释
--max-shard-size {GB}代表每个权重文件最大的大小(默认为2GB)
--device {device_name}这里指的就是device的名称,可选择的有cuda、cpu和auto,默认为cuda即使用gpu进行运算
--is-clip这个参数主要用于确定模型是不是CLIP模型,假如是的话就要加上,不是就不需要添加
cd /root/finetune/work_dirs/assistTuner
conda activate xtuner-env

export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge /root/finetune/models/internlm2_5-7b-chat ./hf ./merged --max-shard-size 2GB

模型合并完成后,我们再次检查目录结构:

在模型合并完成后,我们就可以看到最终的模型和原模型文件夹非常相似,包括了分词器、权重文件、配置信息等等。


模型 WebUI 对话

微调完成后,再次运行 xtuner_streamlit_demo.py 脚本来观察微调后的对话效果,
注意:在运行之前,需要将脚本中的模型路径修改为微调后的模型的路径

cd ~/Tutorial/tools/L1_XTuner_code

文件路径:/root/Tutorial/tools/L1_XTuner_code/xtuner_streamlit_demo.py 

接着,我们启动应用:

conda activate xtuner-env

streamlit run /root/Tutorial/tools/L1_XTuner_code/xtuner_streamlit_demo.py

运行后,确保端口映射正常,如果映射已断开则需要重新做一次端口映射:

ssh -CNg -L 8501:127.0.0.1:8501 root@ssh.intern-ai.org.cn -p *****

最后,通过浏览器访问:http://127.0.0.1:8501 就可以进行对话了。

来点有趣的,一点点震撼 (肉眼可见的强):

 


进阶任务

任务要求

  • 将自我认知的模型上传到 HuggingFace/Modelscope/魔乐平台,并将应用部署到 HuggingFace/Modelscope/魔乐平台 (优秀学员必做)
  • 参与社区共建,获取浦语 api 创建自己的数据用于微调(有创意的成果有机会获得优秀学员提名)

先去完成其他基础任务,回来继续做~


欢迎大伙儿参与活动和留言交流 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值