基数排序基本介绍
基数排序(radix sort) 属于“分配式排序” (distribution sort) , 又称“桶子法” (bucket sort) 或 bin sort, 顾名思义, 它是通过键值的各个位的值, 将要排序的元素分配至某些“桶” 中, 达到排序的作用
基数排序法是属于稳定性的排序, 基数排序法的是效率高的稳定性排序法
基数排序(Radix Sort)是桶排序的扩展
基数排序是 1887 年赫尔曼· 何乐礼发明的。 它是这样实现的: 将整数按位数切割成不同的数字, 然后按每个位数分别比较。
基数排序思想
将所有待比较数值统一为同样的数位长度, 数位较短的数前面补零。
然后, 从最低位开始, 依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
基数排序图解
有 10 个桶,对应编号为 0~9
步骤
第一步:根据原数组 arr 中每个元素的个位数,将其依次放入 0~9 号桶中(每个桶从前往后放),放置完毕后,再将桶中的数据依次取出(每个桶从前往后取),放回原数组 arr 中,这样原数组 arr 中个位数的元素就已经按照顺序排好了
第二步:根据原数组 arr 中每个元素的十位数,将其依次放入 0~9 号桶中(每个桶从前往后放),放置完毕后,再将桶中的数据依次取出(每个桶从前往后取),放回原数组 arr 中,这样原数组 arr 中十位数 + 个位数的元素就已经按照顺序排好了
第三步:根据原数组 arr 中每个元素的百位数,将其依次放入 0~9 号桶中(每个桶从前往后放),放置完毕后,再将桶中的数据依次取出(每个桶从前往后取),放回原数组 arr 中,这样原数组 arr 中百位数 + 十位数 + 个位数的元素就已经按照顺序排好了
…
何时排序完毕?当数组中最长位数的元素处理完毕,排序完成
桶的容量如何确定?假设数组每个元素位数相同,那么单个桶最大容量即为数组容量,我们用一个二维数组来表示桶:int[][] bucket = new int[10][arr.length];
我们如何知道每桶中装了几个元素?这也需要记录,用一个一维数组来记录:
int[] bucketElementCounts = new int[10];
总结:
假设数组中元素的最长位数为 maxLength ,则处理完 maxLength 位数后,数组排序完毕:*for(int i = 0 , n = 1; i < maxLength; i++, n = 10) {
使用一个 for 循环处理原一维数组 arr ,将其放入桶中
for(int j = 0; j < arr.length; j++) {
使用两层 for 循环,处理 10 个 桶,将其中的元素放回原一维数组中
for (int k = 0; k < bucketElementCounts.length; k++) {
if (bucketElementCounts[k] != 0) {
for (int l = 0; l < bucketElementCounts[k]; l++) {
代码如下:
// 基数排序方法
public static void radixSort(int[] arr) {
//根据前面的推导过程,我们可以得到最终的基数排序代码
//1. 得到数组中最大的数的位数
int max = arr[0]; //假设第一数就是最大数
for(int i = 1; i < arr.length; i++) {
if (arr[i] > max) {
max = arr[i];
}
}
//得到最大数是几位数
int maxLength = (max + "").length();
//定义一个二维数组,表示10个桶, 每个桶就是一个一维数组
//说明
//1. 二维数组包含10个一维数组
//2. 为了防止在放入数的时候,数据溢出,则每个一维数组(桶),大小定为arr.length
//3. 名明确,基数排序是使用空间换时间的经典算法
int[][] bucket = new int[10][arr.length];
//为了记录每个桶中,实际存放了多少个数据,我们定义一个一维数组来记录各个桶的每次放入的数据个数
//可以这里理解
//比如:bucketElementCounts[0] , 记录的就是 bucket[0] 桶的放入数据个数
int[] bucketElementCounts = new int[10];
// n=1 表示处理个位,n=10表示处理十位,n=100表示处理百位 ......
for(int i = 0 , n = 1; i < maxLength; i++, n *= 10) {
//(针对每个元素的对应位进行排序处理), 第一次是个位,第二次是十位,第三次是百位..
for(int j = 0; j < arr.length; j++) {
//取出每个元素的对应位的值
int digitOfElement = arr[j] / n % 10;
//放入到对应的桶中
bucket[digitOfElement][bucketElementCounts[digitOfElement]] = arr[j];
bucketElementCounts[digitOfElement]++;
}
//按照这个桶的顺序(一维数组的下标依次取出数据,放入原来数组)
int index = 0;
//遍历每一桶,并将桶中的数据,放入到原数组
for(int k = 0; k < bucketElementCounts.length; k++) {
//如果桶中,有数据,我们才放入到原数组
// 遍历第k个桶(即第k个一维数组), 将桶中的数据放回原数组中
for (int l = 0; l < bucketElementCounts[k]; l++) {
// 取出元素放入到arr
arr[index++] = bucket[k][l];
}
//第i+1轮处理后,需要将每个 bucketElementCounts[k] = 0 !!!!
bucketElementCounts[k] = 0;
}
System.out.println("第"+(i+1)+"轮,对个位的排序处理 arr =" + Arrays.toString(arr));
}
}