Acwing 1226. 包子凑数(完全背包的应用)

文章介绍了如何使用动态规划和最大公约数理论来判断一组数字能否组成所有可能的数字。当最大公约数不为1时,存在无法组合的数字;否则,通过完全背包的思路,构建dp数组找出不能组合的数字数量。

 

 

解题思路:

 首先我们要判断什么时候是无限个,该判断用到的结论如下,对于给定n个数字,他们能凑出来的最小的数字是他们的最大公约数,所有我们要先求出题目给出的n个数的最大公约数g,如果g!=1,那么说明所有比g小的数字,及其倍数都无法被拼凑出来,反之如果g==1,那么说明不能凑出来的数是有限个的,那么对于有限个的数字我们做如下讨论。

这里判断要用到的结论是,对于给定的两个互质的数字a和b,他们不能拼凑出来的最大的数字是(a-1)*(b-1)-1,对于n个数字,因为这些数字的取值范围是1~100,所以对于最大的两个互质的数字为99和100,所以最大不能拼凑出来的数字不会超过(100-1)*(99-1)-1,我们粗略记为10000,到了这一步之后我们就要去判断在1~10000这个范围内不能拼凑出来的数字有多少了。

这里就不难看出,可以直接套用完全背包的思想,dp[i]表示是否能凑出数字i,如果等于0表示不能凑出,等于1表示能够凑出。

上代码:

#include <bits/stdc++.h>
using namespace std;
const int N=110;
int n,a[N],dp[10010];
int main()
{
    cin>>n;
    int g=0;
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        g=__gcd(g,a[i]);
    }
    if(g!=1)
    {
        cout<<"INF"<<endl;
        return 0;
    }
    
    dp[0]=1;
    for(int i=1;i<=n;i++)
        for(int j=a[i];j<10000;j++)
        dp[j]|=dp[j-a[i]];
    int ans=0;
    for(int i=0;i<10000;i++)
    if(!dp[i])
    ans++;
    cout<<ans<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值