学习笔记 | Second算法

借鉴【3D目标检测】SECOND算法解析 - 知乎

Second是在Voxelnet的基础上进行改进的

1.稀疏卷积 

稀疏中间层特征提取如上图所示,其中黄色框表示稀疏卷积,白色框表示子流形卷积,红色框表示稀疏到密集层。可以发现其有两个稀疏卷积阶段,每个阶段有多个子流型卷积层和一个正常稀疏卷积层对z轴进行下采样。在z轴维度下采样到1或2时将稀疏数据转化为稠密特征图,reshape成2D数据。

稀疏卷积的具体原理  通俗易懂的解释Sparse Convolution过程 - 知乎

2.方向回归

        作者在最后的RPN层(原来是两个分支,用来物体分类和位置回归)多引入了一个分支(如下图5所示),用来对物体方向进行分类

       对于损失部分,SECOND对位置信息xyz以及尺寸信息whl都采用了和VoxelNet一样的方法,也就是直接回归预测,但是对于角度预测进行了改进。这是由于VoxelNet直接预测弧度偏移,但在0和π的情况下会遇到一个对立的问题,因为这两个角度对应的是同一个盒子,但当其中一个被误认为是另一个时,会产生很大的损失。这里SECOND对于角度的损失函数设置为:Lθ = SmoothL1(sin(θp − θt))。

      但是由于两个相反方向的损失一致,如何判别正负方向。SECOND的解决方案是再输出一个direction head(方向分类器)来判别,如果anchor绕GT的z轴旋转大于0,则结果为正;否则为负。(直接通过一个softmax loss来进行约束。如果theta>0则为正,theta<0则为负。那么这就是个简单的二分类问题了,也就是结构图中direction classifer)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值