Pytorch中with torch.no_grad()或@torch.no_grad() 用法

本文介绍了PyTorch中`requires_grad`属性的使用,当设置为True时,网络权重将记录梯度以备反向传播;反之,如果设置为False,则不计算梯度。同时,`torch.no_grad()`上下文或装饰器用于在测试阶段关闭梯度计算,以提高效率。`model.eval()`切换模型到评估模式,此时模型的行为将适应预测而非训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • requires_grad=True: 要求计算梯度
  • requires_grad=False: 不要求计算梯度
  • with torch.no_grad()或者@torch.no_grad()中的数据不需要计算梯度,也不会进行反向传播。
model.eval()                                # 测试模式
with torch.no_grad():
   pass
@torch.no_grad()
def eval():
	...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值